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We have used a variational technique to calculate the effect of an electric field on the non-
hydrogenic binding energy of a donor impurity in a square GaAs/Ga1-x AlxAs quantum well 
wire (QWW). The non-hydrogenic binding energy of the donor impurity was calculated by 
the variational method as a function of applied electric field, the wire radius and donor 
impurity position. The results show that the non-hydrogenic binding energy of donar impurity 
located around the centre is larger than that of the hydrogenic binding energy. In this work, 
the variational method employed is capable of giving all the correct trends for impurity 
binding energies as a function of applied electric field, impurity position and screening effect. 
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1. Introduction 
 

In the last two decades low-dimensional heterostructure systems such as thin films, wires 
and quantum dots [1-2] have received a great deal of attention. However their interesting physical 
properties [3,4] and their technological applications in electronic and optical devices. In 
semiconductor materials, an applied electric field is a subject of fundamental interest for probing the 
physical properties of new device principle. The effect of applied electric on the binding energy has 
been the subject of insensitive investigation. The presence of hydrogenic impurities is one of the 
main problems in semiconductor low-dimensional systems, since the presence of the impurity states 
in the nanostructure affects both the electronic mobility and the optical properties. Much work has 
been devoted to the study of hydrogenic impurity states in these systems. Binding energy 
calculations for hydrogenic impurities in quantum wells (QWs) [5-7], quantum well wires (QWWs) 
[8-10] and quantum dots (QDs) [11-13] have been performed. It is found that when the dimensions 
of the system are reduced, the quantum size becomes clear and an effective strength of the Coulomb 
interaction increases. Thus the binding energy of the electron should be larger in lower dimensions.  

The effect of an electric field on the hydrogenic binding energy was presented by several 
authors [14-21]. The effect of an electric field and the geometric form of the system on the binding 
energies of shallow donor impurities in QWWs was presented by Montes et al. [22-24] and Ula� et 
al. [14,15]. They found that the hydrogenic binding energy of a shallow donor impurity is a rather 
sensitive function of the geometry of the QWW and of the distribution of impurities inside the 
QWW. Some theoretical work has been reported on the calculations for the non-hydrogenic binding 
energies of donor impurities in QWWs [24-27] taking into consideration the r-dependent dielectric 
response. 

Sakumar and Navaneethakrishnan studied the non-hydrogenic binding energy of a shallow 
donor impurity in a square cross-sectional QWW, assuming the donor at the origin [28]. Their 
calculations were performed with two different dielectric functions, the first of which was previously 
used in the study of donor in the bulk of semiconductor systems as applied to QWWs. They have 
shown that the choice of the dielectric function is important, especially for small well widths and the 
contribution from the dielectric screening to the binding energy does not contribute significantly for 
larger well widths.  

Csavinszky and Oyoko [29] have calculated the binding energies of on-axis hydrogenic and 
non-hydrogenic donors with zero electric field as a function of the radius of the GaAs-(Ga,Al)As 
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QWW of circular cross-section, assuming the impurity located at the origin. They have found that 
both hydrogenic and non-hydrogenic binding energies of donor impurities are sensitive functions of 
the QWW radius and, for infinite barrier height, increase as the radius decreases. Recently, Oyoko 
[30] has studied the effect of Hermanson’s spatial dielectric function on the impurity binding energy 
in a cylindrical cross-sectional GaAs-(Ga,Al)As QWW under zero electric field. He concluded that 
this effect is to increase the binding energy of the non-hydrogenic donor impurity with decreasing 
radius over that of a hydrogenic donor. 

To the best of our knowledge there are no theoretical studies considering the effects of 
applied electric fields on the binding energies of non-hydrogenic donor impurity located in different 
positions outside of the center of the square QWW with finite confining potential. 

In the study we have calculated the ground state binding energies of both hydrogenic and 
non-hydrogenic donor impurity located in different positions of the square QWW with finite 
confining potential under applied electric field. The difference in donor binding energy in the two 
regimes, which is due to the effect of Hermanson’s spatial dielectric function, has also been 
calculated as a function of the QWW width and impurity position. We have found that the binding 
energy for non-hydrogenic case is extremely sensitive to the impurity position. However the 
influence of the electric field for both binding energies is the same. 

This paper is organized as follows. In Section 2, we present general formalism we deduce 
expression of the donor binding energies with electric field and the dielectric function. The 
numerical results and discussion are presented in Section 3. Finally, Section 4 summarizes the main 
results of the work along with a few concluding remarks. 

 
 

2. Theory 
 

It is convenient to use the Cartesian coordinates for wires of rectangular cross-section. The 
Hamiltonian for the wire of rectangular cross-section, lying along the z-direction, is 
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where 
∗m  is the electronic effective mass and )y,x(V is the finite confinement potential given by 
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Thus the electron is free to move along z-direction, but constrained along x- and y- direction. The 
subband structure of the wire is obtained by the variational method using the following trial wave 
function 
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where N0 is the normalisation constant, �/m2k 01 Ε= ∗ , ( ) �/Vm2k 002 Ε−= ∗ .Matching the wave 
function  and its derivative at the boundaries yields 
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 We have taken the cross-section to be a square with sidesn Lx = Ly = L. Next, we calculate the 
effect of an electric field on the subband energies by using the Hamiltonian 
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 ( )θ+θη+= sinycosxHH 01          (5) 

where Fe=η  and F is the electric field strength applied perpendicular to axis of the wire. θ  is the 
angle between the electric field and the positive x-axis. The trial function in this case is modified to 
be 

 ( )[ ]θ+θβ−Ψ=Ψ sinycosxexp)y,x(N)y,x( 011         (6) 
 

where 1N  is the normalisation constant and � is the variational parameter.  
With an impurity at (xi , yi, 0) the Hamiltonian becomes 
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where h indicates the hydrogenic case and �0 is the static dielectric constant. The trial wave function 
for the bound electron is defined as  
 

 ��
�

�
��
�

� +−+−λ−= 22
i

2
ih1hh zyyxxexpy)(x,�Nz)y,(x,�             (8) 

where Nh is the normalisation constant and hλ  is the variational parameter in the hydrogenic 
regime. For the non-hydrogenic donor the Hamiltonian is given by 
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where subscript nh indicates the non-hydrogenic regime and ε(r) is the Hermanson’s spatial 
dielectric function, which can be expressed as  
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where c is the screening constant. The trial wave function for the bound electron is taken to be 
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where Nnh and �nh are the normalisation constant and the variational parameter in the non-hydrogenic 
regime, respectively. The binding energy of the non-hydrogenic impurity is defined as 
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The hydrogenic binding energy can be obtained by replacing )z,y,x(hψ  placed in the right-hand 

side of equation (12) with )z,y,x(nhψ . Numerical results are found for the GaAs/Ga1-xAlxAs 

system where in the finite- barrier model we have taken 0.6V0= eV and12.5(1=ε0, x is concentration of Al. 
 
 

3. Results and discussion 
 
We have a done a series of calculations and investigated the impurity binding energy as a 

function of electric field, wire width and impurity position. The calculations are carried out for the 
model system of GaAs/Ga1-xAlxAs for which we find the effective Bohr radius 

7.98e*m*a 2
0

2 =ε= � Å and effective Rydberg meV.*ae*R 8352 0
2 =ε= . 

The impurity binding energies of hydrogenic and non-hyrogenic cases in are shown in Fig.1 
where we have calculated the binding energies as a function of length of square QWW for zero 
electric field our results perfect agreement with previous calculations without the electric field the 
binding energies are found to be almost identical for square cross-section if hydrogenic and non-
hydrogenic cases are taken to be comparable. 
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The impurity position dependence of the binding energies is shown in Fig.2 where the 
impurity position is changed along the diagonal of the square wire (L i(a*)) without electric field . It 
can be seen that up from an impurity position of 0.08a* the two binding energies decrease equall y 
but from about 0.08a* down a small difference can be observed. This difference is due to the 
behaviour of Hermanson’s spatial dielectric function around the impurity position of the centre. 

  
 The behaviour of the binding energies under different electric fields is shown in Fig.3 for 
square QWW. The impurity is taken to be at the centre of the wire. The electric field is taken to be 
applied along the positive axis direction with �= 0. Thus, the electron shifts towards the negative 
part of the axis. It is seen from these figures that the hydrogenic and non-hydrogenic binding 
energies are a sensitive functions of the electric fields for square QWW. The non-hydrogenic 
binding energy under 10 kV/cm and 20 kV/cm electric fields are shown for comparison. They fit 
each other as well as hydrogenic binding energy. It should be note that in conventional symmetrical 
structures, the wave functions have a symmetrical  structure and the wave functions have a 
symmetric character. So the donor impurity binding energy does not depend on the direction of the 
electric field. The energy becomes smaller when a field is applied for impurities located at outside of 
centre, as expected for hydrogenic case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The  hydrogenic  and non-hydrogenic  binding  energies  as  a function  of  side   
                             length of the square QQW for different electric field. 
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Fig. 1. The hydrogenic and non-hydrogenic binding 
energies  as  a  function  of  side  length  of  the  square  
                  QWW without electric field. 

Fig. 2. The hydrogenic and non-hydrogenic 
binding energies as a function of impurity 
position   of   the  square  QWW  without  electric 
                                   field. 
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Fig. 4 shows the hydrogenic and non-hydrogenic binding energies as a function of the 
impurity position under different electric fields for square QWW. It can be seen that, as expected for 
the hydrogenic case, the non-hydrogenic binding energy of donor impurity under different applied 
electric fields decreases slowly as the impurity moves from the centre to the boundary of the QWW. 
It should be noted that the non–hyrogenic binding energy of the donor impurity under different 
electric fields behaves as in hyrogenic case. As expected the hydrogenic regime, the applied electric 
field affects the binding energy decrease at all impurity positions. The Al concentration, x, 
dependence of binding energy we show Fig.4. as expected increased the potential barrier increases 
the binding energy, because the electron is better pushed the Coulomb centre when the walls are at a 
higher potential 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The  hydrogenic  and non-hydrogenic  binding  energies as a function of impurity  
                                 position of the square QQW for different electric field. 
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Hermanson’s spatial dielectric function. It is clear that the binding energies difference is more 
remarkable in the smaller dimensions of square QWW. We should note that for the smaller distances 

0→r , ( ) 1=ε r  and for the larger distances the screening is constant with ()rε→ε for 30.x = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The variation of binding energy difference as a function of the square QWW 
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4. Conclusions 
 

In this study we have investigated the effect of an electrical field on the hydrogenic and non-
hydrogenic binding energy of a shallow donor impurity located at different positions in square 
QWW’s. We have used a variational method and within the effective mass approximation of the 
calculations. The changes binding energies depend not only the QWW width but also the applied 
electric field and impurity position in the QWW. In the two regimes the applied electric field 
produces an important effect on the impurity binding energies for the large well widths. 

We have noted that the binding energy of the non-hydrogenic donor impurity located outside 
of the centre wire is influenced more due to the electrical field, as expected hydrogenic case. The 
effect of the Hermanson’s spatial dielectric function is to increase the non-hydrogenic binding 
energy with decreasing widths compared to the hydrogenic case. We find that the difference in 
donor binding energy in two regimes is due to the dielectric function. 

It is shown that the donor binding energy depends sensitively both on the external electric 
field and the position of the quantum well walls. In both cases, the binding energy increases as the 
electron pushed towards the Coulomb centre. Finally, the results obtained in this work are capable of 
describing correctly the behaviour of non-hydrogenic shallow donor impurities in square QWW’s 
under an applied external electrical field.  
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