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The structure of K-Te l iquid alloys at two different stoichiometric compositions was 
determined using the effective pair potentials based on the modified analytic embedded atom 
method (MAEAM) with the Variational Modified Hypernetted Chain (VMHNC) liquid state 
theory. The MAEAM potential functions are fitted to both solid and liquid state properties 
for only pure liquid metals. A new effective pair potential form based on the MAEAM has 
been proposed for the best possible structural properties of these alloys. The partial pair 
correlation functions for the K0.12Te0.88 at T = 723 K and equiatomic KTe at 770 K have been 
obtained. The results are in reasonably good agreement with experiments and MD results. 
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1. Introduction 
 

The interatomic potentials for the metallic systems play an important role in the atomic 
computer simulations, as the accuracy of the potentials will obviously affect the result of the 
computer simulations. Nowadays, computer simulations have become the increasingly useful tool 
for studying the structure and properties of metals and alloys. The embedded-atom method (EAM) 
potentials which was originally proposed by Daw and Baskes (DB) [1] and has been widely used in 
a wide range of metallic systems in many aspects of computer simulations, such as point defects 
alloying, segregation, surface, grain boundary structure and so on [2,3]. Based on Daw and Baskes’  
EAM model, Johnson had presented analytic EAM (AEAM) nearest-neighbor models for b.c.c, f.c.c, 
and h.c.p. metals and alloys [2,4]. Zhang et al. [5] developed a modified analytic EAM (MAEAM) 
model based on Johnson’s (AEAM) model. Zhang and co-workers calculated the formation 
enthalpies, point defects, surface structures for disordered solid-solution and ordered inter-metallic 
compounds and so-on [5-8]. Recently Fang et al. [9] have been constructed the interatomic 
potentials for binary immiscible alloy systems with MAEAM, and then calculated the formation 
enthalpies for those systems. They have demonstrated that the MAEAM may be a reasonable 
method for immiscible alloys by comparing with other potential models [10]. In the literature, there 
are several versions of EAM which differ by parametrisation methods and functions involved. The 
parametrisations are performed by fitting the model to bulk solid properties using different energy 
equations of state. Generally universal equation of Rose et al. [11] is used. Although the EAM 
primarily developed for the solid phase has also been used in liquid structure calculations with 
molecular dynamic (MD) simulations or integral equation theories in order to check the accuracy of 
the forms chosen for the embedding function and pair interaction and of the method used for their 
parameterisation. In addition, researchers [12-14] found that one of the self consistent integral 
equation theory, the variational modified hypernetted chain (VMHNC) approximation [15-17] 
successfully applied to metallic systems in the EAM calculations. It is for this reason that we choose 
the VMHNC theory for our liquid structure calculations using the MAEAM derived effective pair 
potentials. 

On the other hand, chalcogen liquids in the liquid metals and alloys, such as selenium and 
tellurium have received considerable attention. It is known that the liquid Te has metallic properties, 
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while the solid Te is a typical semiconductor. It is noticed that alkali-chalcogen alloy systems exhibit 
interesting chemical and physical properties due to the large difference in electronegativity of 
components. Among them the K-Te system shows one of the most complex phase diagram for a 
binary system. Thermodynamic and electronic properties indicate a similar complex behaviour in the 
liquid system. Both experimental investigations of the thermodynamic properties and diffraction 
experiments on K-Te alloys demonstrate that the compound forming tendency has been extended to 
the liquid state. Neutron diffraction experiments of the equiatomic melt of K-Te alloys have been 
performed by Fortner and co-workers [18]. The generalized gradient approximation (GGA), has 
been employed by Hafner and co-workers [19, 20] in the first principal molecular dynamic (FPMD) 
calculations for K0.67Te0.33, K0.50Te0.50 and K0.12Te0.88 alloys. 

According to our knowledge, up to now no MAEAM potential model has been applied to the 
alkali – tellurium alloy systems. In this work we have studied with recently proposed MAEAM 
models in order to produce an effective pair potential which is capable of predicting the structural 
properties of liquid K and Te metals. The parameters of the MAEAM potential functions are 
parameterized which give a good description of the liquid and still describe the solid accurately. We 
have improved the functional forms of the effective potentials based on the MAEAM. In order to 
construct the alloy effective pair potential, two di fferent alloy potential forms has been proposed. 
One of the purpose of the present paper is to obtain the suitable effective interatomic pair potentials 
for binary l iquid K-Te alloys based on the MAEAM. The presently obtained effective potentials for 
K0.50Te0.50 and K0.12Te0.88.alloys are used as input data in the VMHNC [21, 22] structural 
calculations. We have found that the Finnis-Sinclair [23] type alloy effective potentials reproduce 
well the observed total structure data for the presented composition of K-Te alloys.  

 
 
2. Theory 
 
In the MAEAM model, a modified energy term M(P) is added to the total energy expression 

for the EAM to express the  difference between the actual total energy of a system of atoms and that 
calculated from the original EAM using a linear superposition of spherically averaged atomic 
electron densities [24]. The total internal energy of system for the MAEAM potentials is written as 
[25]: 

 

( ) ( ) ( )
���

+φ+ρ= ii jitot PMr
2
1

FE ,                                      (1) 

 

where ( )iF ρ  is the embedding function, ( )ijrφ  is the pair potential between atoms i and j with 

separation distance ri j and iρ  is the electron density induced at site i by all other atoms in the system 
and i is taken in the original form [26]: 
 

( )�
=ρ i jrfi                                                                  (2) 

 
M(Pi ) is the energy modification term which is empirically taken as  
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The embedding function ( )ρF  and atomic density f(r) are taken the forms as those used by Johnson 
[27] 
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where subscript e indicates equilibrium state ,  r1e  is the nearest neighbor distance in equilibrium, 

Fo=Ec -E1f ,  fe is taken as Ω= ce Ef  where Ω  is the atomic volume. In this work, we assume that 
metal  A and B are  b.c.c. and h.c.p. metals, respectively. The energy modification term P  in h.c.p 
metal has the same expression as those for b.c.c metal given in [28] as 
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                                                          (6) 

 
The sum in Eq.(6) is taken to rc which is defined as the cut-off distance. If the distance between the  
considered atom and its surrounding atom is smaller than or equal to rc , the pair potentials are taken 
as the following equations [9]. For h.c.p metals, it takes  
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For b.c.c  metals, it is given by  
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In the above equations, the fitting parameters for h.c.p. are 10 and for b.c.c. metals are 8. In this 
work, we concentrate on the liquid state calculations. We have parameterized the potential functions 
which give a good description of the liquid state properties and still describe the solid state 
accurately. We assume that if the distance is larger than or equal to rc, the functions )r(φ , )r(f  and 
their slope go to zero. This is known as two cut off condition: 
 

0)r( c =φ ,  0)r(f c =                                (9– a) 
0)r( c =φ′ ,  0)r(f c =′        (9– b) 

 
The vacancy formation energy E1f is the energy difference between a crystal with one vacancy lattice 
site and a perfect crystal containing the same number of atoms. In this formalism, this unrelaxed 
vacancy formation energy can be approximately represented with the pair potential approximation 
for fitting purposes [2], i.e. 
 �

φ−= )r(
2
1

E cf1 .           (10) 

 
In the above equations the coefficients α and n  can be determined from the following equations. 
 

 .)P(M)r(
2
1

)a(E)(F cEOSc � −φ−=ρ ∗
                       (11) 

 

where )a(E *
EOS is Rose’s equation of state (EOS)  for the cohesive energy at given temperature for 

liquid metals [11]. We have noted that this scheme gives the perfect agreement with experimental 

values of lattice constant a, cohesive energy cE  and Bulk modulus B in their solid state. 
In order to obtain the effective pair interactions from the MAEAM, we have extended the 

Finnis-Sinclair (FS) effective pair potential approximation which is based on the original EAM and 
used in our previous calculations [29]. We assume that the second and higher derivatives of the 
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embedding function F are ignored. Thus the atoms interact with the effective pairwise interaction 
)r(effφ  in pure metals given by 

 
                  ( ) ( ) ( ) ( ) ( )PMrfFrreff ρ′−φ=φ 2                                                     (12) 

 

where )(F ρ′  denotes the first derivative of embedding function. In the present paper, We propose a 
new alloy effective pairwise potential form based on the FS model as:  
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eff PMrfF2rr ρ′−φ=φ .                                         (13) 

 

where the alloy pair potential )r(ABφ between different atomic species is taken as Johnson’s formula 
[2]: 
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Here AA and BB indicate A and B, type atoms in a binary alloy respectively. )r(AAφ and )r(BBφ are 
the monatomic potentials given by Eqs. (7-8) respectively. In the above equations 
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where r1eAB = (r1eAA + r1eBB)/2 ,  feAB = ( feAA + feBB)/2,  
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where αAB = (αAA + αBB)/2 ,  PeAB = ( PeAA + PeBB)/2, 
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We have also checked the alternative two-body potential functions of alloy as given below. 
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            ( ) ( )rr ABAB
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The potential form given in Eq. (18) is similar to the modified Johnson potential proposed by Zang 
et al [25].  

 
 
3. Liquid state theory  
 
With the effective pair potential known, integral equations are able to provide us the liquid 

structure for metals. In our structural calculations, one of the integral equation theory which has 
shown to be very reliable theory of liquids is VMHNC has been carried out [21, 22, 30]. The starting 
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point of most of the integral equation theories of liquids is the Ornstein-Zernike (OZ) equation, 
which for a homogeneous, isotropic, binary system reads (i, j =1, 2) can be written as  
 

( ) ( ) ( ) ( )
�

=

ρ+=
2

1l
l ji lli ji j rc*rhrcrh                    (20) 

 

   which defines the partial direct correlation functions, )r(cij , in terms of the total correlation   

functions, ( ) ( ) 1−= rgrh ijij where ( )rgij  denote the partial pair distribution functions and lρ  denote 

the partial ionic number densities. Eq.(20) is supplemented by the exact closure relation 
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where ( )rijφ  are the interatomic pair potentials and the ( )rBij  denotes the PY bridge functions for 
binary system. For binary fluids, we have now a set of three coupled integral equations relating the 

( )rgij  to ( )rijφ . We have carried out the VMHNC integral equation theory in which was extended    
by Gonzalez et al. [21], so as to minimize the configurational Helmholtz free energy functional    

( )αηρβ ,,, l
VMHNC xf by the variational condition for the m component system.  
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 The total structure factors for liquid alloys are determined as a linear combination of partial 
structure factors [31] given by 
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where bi and bj are the neutron scattering amplitudes which are taken from [20]. 
 
 

4. Results and discussion 
 
4.1 Simple metals 
 
The input parameters, such as the ionic number densities and thermodynamic states for 

liquids K and Te are taken from Waseda [32] and given in Table 1 where s and l indicate the solid 

and liquid phases, respectively. 
s
cE  and sa  values are taken from Kittel [33] In this work for the 

purpose of the liquid state calculations, we have used the Rose’s equation of state (EOS) [11] to 
calculate the cohesive energy for pure metals at given temperature. We have determined the 
parameters of the potential functions by combining the two equations for the cut off procedure (Eqs. 
9) and the equation of the equilibrium condition (Eq. 10), the equation for the cohesive energy (Eq. 
11) and the equation for minimizing the configurational free energy (Eq. 22). We must say that we 
have not fitted the Helmholtz free energy. Following others, the set of parameters have been chosen 
to give the best possible values for the liquid structure. The optimized potential parameters for K and 
Te which have been obtained at near their melting are presented in Table 2. We note here that the rc  
values listed in table 2 are different from those of  FPMD calculations because the value of rc are 
always larger than in solids. 
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Table 1. The input  data used in our calculations. ρ number density (atoms/Å3), a lattice 
constant (Å) , Ec cohesive energy in eV. 

 
 

 T (K) ρ  (atoms/ Å  3) as (Å) al (Å) s
cE  (eV) 

l
cE (eV) 

K 723 0.0114 5.225 5.598 0.934 0.926 
 

Te 743 0.0273 3.883 3.991 2.19 2.187 
 

 
 

Table 2. The MAEAM potential parameters for K and Te. 
 

                                Te                            K 
Parameter Value Parameter Value 
n  0.8300 n  0.4516 
F0(eV) 1.45862 F0(eV) 0.61749 

  (eV) 0.040038 
  (eV) 0.31746 
K-1(eV) 42.60208 K-1(eV) 37.22396 
K0(eV) -187.38786 K0(eV) -159.58595 
K1(eV) 349.04768 K1(eV) 275.73292 
K2(eV) -359.11337 K2(eV) -240.06857 
K3(eV) 221.12729 K3(eV) 105.10185 
K4(eV) -81.61164 K4(eV) -18.45449 
K5(eV) 16.72094 rc(Å) 6.45 

K6(eV) -1.46654   
rc(Å) 5.12   

 
 
Fig. 1 shows the MAEAM embedding energy functions for liquids K and Te. The difference 

in both the depth and position of the embedding function indicates the large di fference in 
electronegativity of tellurium and potassium. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
 

Fig. 1. MAEAM embedding energy function for liquids Te and K. 
  

 
The constructed MAEAM effective pair potentials for K and Te are used as input data in our 

structural calculations using the VMHNC approximation. Fig. 2 shows the calculated pair 
distribution functions for l iquids K and Te compared to the experimental data of Waseda [32]. For 
comparison the experimental results of Shimojo [34] are illustrated for Te.  

 
 

r(Å) 
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Fig. 2. Pair distribution functions for (a) liquid Te and (b) liquid K. The experimental data 
are taken from Waseda [32]. 

 
 
 

The agreement between the calculated VMHNC results using the effective potential 
presently determined and the experimental data is a good for liquid K. For liquid Te, the double peak 
is observed in both the experimental data. The VMHNC result for liquid Te clearly differs from the 
experimental data in the first neighbor region of the pair distribution function. However the medium, 
long range r region and the pair distribution is well reproduced.  
 
 

4.2 The K-Te alloys 
 

As described in the preceding section, we have extended the Fang’  MAEAM to study the 
structural properties of the liquid binary K-Te alloys. The resultant FS type alloy effective potentials 
are shown in Fig. 3a. The different forms of alloy potentials are compared with each other in Fig.3b. 
As seen Fig. 3a that these partial pair potentials give the correct trends as far as the position of the 
concerned. As we go from K to Te in periodic table, the calculated potentials becomes flatter and the 
width increases. In Fig. 3b, the FS type alloy potential is deeper than the Johnson and modified 
Johnson potentials. But when r is larger than r1e, the present potential coincides with others. We note 
that there is not a clear difference in the structural calculations using these potentials. These effective 
pair potentials are used the input data in our structural calculations. In. Fig. 4, we have presented the 
calculated VMHNC partial distribution functions for Te-Te and K-Te in K0.12 – Te0.88 composition 
by comparing with those obtained by Kresse – Hafner [20]. 
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Fig. 3. (a) MAEAM effective pair potentials for K0.12-Te0.88 alloy. (b) Comparison of the 
alloy  effective  potentials  those  obtained   by  different  forms: (A)  FS  type  MAEAM (B)  
                               Modified  Johnson [25]  (C) Johnson potentials [2]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             
 
 
 
 
 
 
 
   

Fig. 4. Partial pair distribution functions for (a) )r(g TeTe−  (b) )r(g TeK− in  88.012.0 TeK  at 723 K. 
 
 

It is seen in Fig. 4 that the present results correctly predict the position and height of the first 
peak of experimental pair distribution function. We note that with decreasing temperature the height 

of the main peak of )r(g TeTe−  increases. When the K concentration is increased, the first minimum 

of the )r(g TeTe−  becomes deeper and the first peaks of the )r(g TeK−  become larger. Kresse –Hafner 
[20] found that the structure of  the K0.50-Te0.50 is in good agreement with experiment. The calculated 
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total structure factors S(Q) for each alloy composition studied in this work are illustrated in Fig. 5 
and Fig. 6, respectively. We can not able to compare our results for total S(Q) with those obtained 
by Kresse-Hafner. Fig. 5 shows that the height of the calculated total structure factor is 
overestimated compared to experiment for K0.12 – Te0.88 composition. Also there are small 
differences in the phase of oscillations. For the equaltomic alloy composition of K-Te alloy, it is 
clear that the position of the main peak is well predicted using the effective pair potentials based on 
MAEAM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                               Fig.5. Total Static structure factors: K0.12-Te0.88  at 723 K  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                           

Fig. 6. Total static structure factors: K0.50-Te0.50  at 770 K. 
 
 

In Fig. 6, the calculated structure factors also reproduce the pre-peak at about Q = 0.5 Å-1. 
This may be attributed to long-range behaviour of the potential. It appears that the MEAM potentials 
predict the total structure factors in better accord with the experimental trends. The overall 
agreement with experiment is a high degree for the equi-atomic composition of K-Te alloy.  

 
 
5. Conclusions 

 
The presented MAEAM provides a realistic description of the pair interaction in liquid K-Te 

alloys. These calculations were performed with the potential functions that not only fit to solid data 

� � � � � � �

Q(A
o -1

)

�

�

�

 S
(Q

)

present work

X-ray - Exp.

Neutron - Exp.

� � � 	 
 � �

Q(A
o -1

)

�

�

�

 S
(Q

)

present work

X-ray - Exp.

Neutron - Exp.

Q(Å-1) 

Q(Å-1) 



G. Tezgor, S. S. Dalgic, U. Domekeli 
 
 

1992 

but also liquid state properties. Since the embedding function and pair potential in the pure liquid 
metals are different from those of the solid, we have improved the functional forms of the effective 
pair potentials to obtain a good description of the liquid and sti ll describe the solid accurately. We 
note that our effective pair potentials show long-range character di fferent from other MAEAM  
derived potentials for solids. The structural calculations were carried out using MAEAM derived 
effective pair potentials with the VMHNC theory of liquids. Comparison between the results of the 
VMHNC theory and available experimental data show that the proposed MAEAM formalism for K-
Te alloy systems is capable of providing a good description in their liquid state. Our results suggest 
that the effective alloy pair potential based on the MAEAM model is a very good approximation for 
the study of liquid alkali- tellurium alloys. The discrepancies with experiment make further 
investigations necessary. The constructed MAEAM potentials can be used in further modelling of 
thermodynamic and other properties of K-Te alloys with molecular dynamic and Monte Carlo 
simulations. 
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