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RADIATIVE GAUNT FACTORS
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In this work we will consider the possibility of using the Coulomb Green’s function for the
caculation of both, bound and quasi-continuum state energy of a system with two active
electrons outside closed shell. Our approach is based on the Sturmian representation of the
wavefunction for the free electron. The corresponding effective quantum numbers for bound
and continuum states are included into the calculations of free-free and free-bound Gaunt
factors. Thelink to the experiments is the ability of the models to generate synthetic spectral
features which can assist in anadysis of observed spectra Comparisons with other methods
are aso provided.
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1. Introduction

In the fitting of observed spectra for diagnostic analysis, it is generaly the rdative
intensities of a set of connected spectrum lines which alow inference of underlying plasma
parameters. It has been recognized that, for new approaches to spectroscopic measurement of
enhanced diagnostic impact, earlier systematic large-scale production of atomic data should be done.
The effective recombination and ionization rates and emissivities must be known (and at a finite
dectron density) for modeling and analysis the plasma. The light  ement ions, such as carbon ions,
are radiators in the divertors of fusion plasma, dbeit at higher dectron densities and with strong
influence of wall and recycling sources. Moving away from the divertor strike zones towards the
confined plasmas, we progress through higher ionization stages up to the bare nuclei of carbon,
nitrogen, oxygen aong with protons and eectrons. The emission, though, is complex, with a
bremsstrahlung contribution dong with spectrum lines which appears to be non-thermal. Partially
ionized ions of dements such as silver and palladium in the first long period, and tungsten and
tantalum in the second long period, however, have two problems, an aomic structure which
increasingly should be described in intermediate coupling and a consequent description of thear
emitted spectrum lines into very many separated | evels from many transition arrays often associated
with partially inner shdls. The spectral emission may appear as a quasi-continuum. For the quasi-
continuum, rather than individual lines, we can treat spectral intervals. Such spectra intervals can be
those corresponding to particular spectrometer.

On the other hand, from the excited populaion modd s, synthetic spectra can be cd culated
and the significant point is the flexible separation of the spectra, which may be grass-like in ther
complexity at high resolution, into transition array envelopes at lower resolution which are
characteristic of the emitter. The generalized collisiond-radiative coefficients from the population
codes provide the source terms for the ionization badance. The most reevant groups of atomic
coefficients for plasma modeiing are the photon emission coefficients and the energy emission
coefficients. The former enter the atistical balance equations (that is number of conservation) and
the latter the energy baance equations. Maxwel averages of the free-free and free-bound
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coefficients are aso reguired for thermalised e ectron plasmas. To have a spatially non-equilibrium
balance we need to express all these coefficients by using Gaunt factors.

The present paper is mainly addressed to plasma physics community drawing attention to
the uncertainty coming from atomic data calculation. The present paper’'s main concern is with
ensuring the compl eteness of Gaunt factors effects in effective ionic charge modeling and not with
al the consequential modding of populations and ion distributions in plasma. The key issue then is
the starting point of uncertainties in the fundamental component reaction rate coefficients. Where
does the error in a fundamental reaction rate (mostly theoretica) come from? The uncertainty in
collisiond-radiative coefficient is a composite of uncertainties in the possibly very many
contributing individual reaction.

The work proposes a new method for evaluation of bound-bound, bound-free and free-free
Gaunt factors. The underlying theoretical development is the building up of a capacity for full
generalized collisional-radiative modeling of many dectron, heavy systems in arbitrary, possibly
high, states of ionization. The modd is designed to complement the moded's used for few dectron,
light systems. The link to the experiments is the ability of the modéds to generate synthetic spectral
features which can assist in anaysis of observed spectra. Particularly, we have used the Coulomb-
Green's function for the calculation of both, bound and continuum state energy. The positions of
atomic states are andyzed using a Sturmian expansion of the Coulomb Green's function. The
method is applied to low doubly excited states of a system with two dectrons outside closed shell.
This representation is modified twofold. Firstly, the Sturmian term respects the same radia equation
as bound-hydrogenic wavefunction. Thus, the summation on the outer — eectron principal quantum
number can be performed exactly; secondly, it helps to make clear the connection between the CGF
formalism and a new technique which has been developed more recently in order to obtain high-
order perturbative corrections to hydrogenic wavefunctions and energies. Application refers to Be-
like C as an example.

2. Gaunt factors and derived atomic quantities

The basic formulation for Gaunt factors is single configuration Russd-Saunders coupling.
At the fine structure resolution levd, the generalized Gaunt factors are written as[1]:

a) freefree Gaunt factor:
" [(s,L, kisLa,(s,L, kst o] 1)

b) free-bound Gaunt factor:

g"[(s,L, tsLa,(s,L, p1sa] )
¢) bound-bound Gaunt factor:
g'[(s,L, MLy (s,L, p1ra ] ?)

where, SL, denote the spin and orbital quantum numbers of the state'y (that is the parent state of the
z+1timesionizedion), €, €, k, K’ aredefined by € = K = E/z%ly , € = K'? = E'/z,ly, for free states
(zz=z+1),vandv’ arethe effective principa quantum numbers for the quantum shellsn and n’,
being defined by e= -1/v? = E/ 2,4, €= -1V'? = E'/ z,°l, for bound states, |, =13.6 eV.

The usua Einstein coefficients, the stimulated emission rate, the stimulated recombination
coefficients and the radiative recombination coeffid ents, can be described in terms of Gaunt factors:
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160'4C Zggr!n'
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3 2
Bnﬁn' :A'Hn' /8m3V Bn'ﬁn :n_,anﬁn'
C n

where, v=(z,?l/h)(1/n’%-1/n?) is the frequency of the n — n’ photon, and g, v the bound-bound
Gaunt factors.
The excitation rate is written as:
8 2 3.5 | . 1/2
o 2Z[2dmead| 070 O (La )T o ae  kmypE,, KT ()
3 (n?-n?)* z2 (KT, ’ ’

n-n' 3

and the de-excitation rate for hydrogenicions by electronsis given by:

8 2 3.5 | . 1/2
qr(i)» n' = 2_ 2\/7_Taca0 nn gn’n I_H P(AEn n' /kTe) (6)
3 3 (n?-n?)* z (KT, ’

for " > n. In general an effective P-factor is deduced from more complex collision cross-section
calculations or experimental cross-section measurements.

In a similar manner the bound-free rates are obtained in terms of the bound-free Gaunt
factors, g'n.. With a Planck radiation fidd of energy u(v) at temperature T, and dilution W, the
photo-ionization rate coefficient fromthelevel nisgiven by:

()

4 4 o0 1 d
[u), e =[ 2’0 WS [ o
3J3m, ) n° x(e* - 1)

I, /KT,

The stimulated recombination coefficient is:

2L ) 4 ; T Ok &Xp(=T,x/T,)dx
[u0)B, dk = ol fa < m’iOap(ln/kTe)j o p(xr 2 ®)
KT 3‘/§m0 n 1 IKT, x(e” -1

and the radiative recombination coefficient is defined as:

2| 2 4 4 2 g" exp(-x)dx
al(;) - laol H 80' C Z_g@(p(ln /kTe) J' gn,K p( ) (9)
KT, 3\/577"0 n 11K, X

where, 1,=21/ ?, Te isthe Maxwellian free e ectron temperature.
Theloca photon emissivity € (A) a agiven wavel ength iswritten as:

2 3 1/2
e(A)=neniZ§f5(A,Te)[ € J il [ZmEJ exp{ he }1 (10)

47E, ) 3J3mic’h| 7KT, CKTA[ A

e (\) isgiven in units of [photons/ s. sr. m® .A].
The only thing that changes when bremsstrahlung is treated quantum mechanicaly is the
Gaunt factor.

Usually, semi-analytical methods based on the works by Burgess and Seaton [2], Peach [3]
or Bates-Damgaard [4] are used to determine the asymptotic series expansions of the radia wave
functions in the pure Coulomb regime. Moreover, closed analytical expression are available for the |
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summed Gaunt factors in the hydrogenic case [4]. Simple fittings to these ones have been given by
Burgess and Summers[1].

In a pair-coupling , jk , scheme ( J; +1 = K and Kt % = J, where J; is the total angular
momentum of the target state, | isthe orbital momentum of the added e ectron and ¥ its spin) Gaunt
factor is written as follows:

g(ki k .)—izl JFkI Foi, — ;2

dr |’ whereLi + §=J, 3 + i = K and Ke= J". (12)

3. Method of calculation

Our proposa isto consider the possibility of using the Coulomb Green's function for the
calculaion of both, bound-free and free-free Gaunt factors. The method has been suggested from the
multiphoton calculations where there are three different representations of the Coulomb Green's
function: momentum space representation, co-ordinate space representation and Sturmian
representation. The last one is dated 1970 when Hostler [5] derived so-called Coulomb Sturmian
functions.

Our approach is based on the Sturmian representation of the wavefunction for the free
dectron. The advantage of using this representation is coming from the fact that the Sturmian term
respects the same radial equation as bound-hydrogenic wavefunction. Thus, the summation on the
outer — dectron principal quantum number can be performed exactly. The radial components of the
Coulomb Sturmian functions are solutions of the equation:

[1d 2d 10+
drdr r?

- XZ}SM’X (= —onxt SnI (N (12)

where, the parameter X, Re x >0 is kept fixed and n is a positive integer. Accordingly, for
x = (-2Q)"?, they provide a natural expansion basis for G; (r,1";Es).

Besides a normdisation constant, the radia Sturmian functions have a structure similar to
those of bound-state hydrogenic functions:

Snix (1) = Ny () exp(=xr)(2xr)' Lo % (2xr) (13)
where, L2*',  are Laguere polynomias and the normalisation factor reads
2x [(n-1-1)! _ . )

N, (X) = \/_ Tl)l . The expansion of G, over the Sturmian basis reads explicitly:

+00 r' rl
G (I',I";Q):n:I+1 ”'X:f_)nr/wlrx( ) ”

A few specialized analytical expressions in terms of hypergeometric functions of severa variables
are available for three-photon dipole transition amplitude. These formulae have been derived with
the help of the results obtained for the second-order perturbative corrections to a given hydrogenic
wavefunction. More general (multiple-) integral representations have also been derived and again,
the Sturmian approach reveal s itsdf to be more useful in computations [6]. The N-photon amplitude
is written as an (N-1)-order sum running over discrete Sturmian states. A typical N-order radial
component entering the general transition amplitude equation associated to an N-photon transition

from state [ng, I, ) to |, ) reads:
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r r
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S

vyl

where X; =,/—2Q ,|Rn’,>are radial hydrogenic wavefunctions,
components, and the Sturmian index obeysv;= I3+ 1 with [;=1;,+ 1.
The dipole matrix dements <S ‘r S > between Sturmian and/or hydrogenic radial

>are radia  Sturmian

vyl Viailia

components are always reducible to a combination of hypergeometric polynomials, which can be
computed to within any chosen accuracy.

4. Results. System with 4 electrons: 1s2 n:lon;l;( Be-like)

We consider a system with 4 eectrons: a closed shell core plus two active dectrons, named
va ence dectron with nyl,j, and Rydberg dectron with myl; quantum numbers. The proper description
of a such system is a pair-coupling scheme: J + | = K and K + % = J, where J, is the total angular
momentum of the target state, | isthe orbital momentum of the added e ectron and %2 its spin.

In the case of photoionisation of CllI, the main resonances are those of 1s’2pns 'P%; and 1s°2p d'P"..
Following Bethe and Salpeter [7] the Hamiltonian for a such system can be written as:

H=Ho+V

2 2
H0=p—22+U(r2)+p71—ri1 (15)

V:i—l

& = 1 for akaline-earth atoms, but isod ectronic sequences may be considered as well.

In the perturbation expansion, the solution of this Hamiltonian is: E=E® + E® + E® where:
2

E@ =E(n,,j,,nl,) =E,, j —% is unperturbed energy; E

21212 n

1

being the parent-ion energy.

P PYPY

The first order shift E® is obtained after multipolar expansion of V (i.e(first-order) configuration
mixing):

E(l) :ElQ(|2j2|1;|2j2|1;k,/])<n2|2j2|I’"|n2|2j2><n1|1|r_"_1|n1|1>
. i . i _ 1 . . /2
Q, ol olsi ki A) = (D 21,y byl o]
L, A 1Yl A TN\, A Al A | (16)
0 0 OAO O O)|j, Y2 j,)lie k I,
The second order shift: both eectrons are in perturbing state (nglojo, US) implies a sum over
the principal quantum numbers of the perturbing state (ng, V) including the discrete and continuum

pat of the spectrum. However, the sum over ng may usually be restricted to a discrete and even
finiteone
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E@D = 5 S{nalyia ™ nolo)noloio 2 nalaiz) x Q1 izl loiols k. A)Q( 2211 Lol s ki A 2)
Noloio AL

Is A1 (17)

AL 1 A1
%<n1I1|r 1 |vIS>ES_E(V)<vIS|r 2 nygly)

where the denominator is:
E,—E, =E(n,l,j,,nl) —E(Nngly o, U) (18)

and ‘ Coulomb Green's function energy’ is given by:

_ &
ES - E"z'ziz - E"o'oio _2_n12
and E(V)=-&/2V/ for adiscrete state and any positive number for a conti nuum state.

ewill assume the net charge & =1; otherwise, it is easy to state that the first order hydrogenic
element scales as £** whil e the second order involved in E® scales as &,

We have to emphasize that E® includes the interaction of the outer dectron with the core
polarised by the inner ectrons. One has to consider core polarisation by the outer e ectron: this will
give rise to an additional term in energy shift; moreover, if there are quasi-degenerate states, the
non-diagona matrix elements is easy to be write. In this work we concentrate on the possibility of
using Sturmian representation for cal culating effective quantum numbers.

Analytica representation of Coulomb Green's functionis:

§<r|MS>E+E(V)(MS|V'> =G(r,r';E,) =

Es = -12K°= k22

rr' K

s

K +1-K) LRI, (2 1K) (19)
2 2

The product of Whittaker functions has an integral representation in terms of modified Bessd
function. Starting from the relation:

(0 r ksl = fdrr **R(ny;1)S(ke Nyl 1) (20)
0

where,

R(nl;r)=N(nl)r" e ™F(, +1-n;2l, + Z;A)
nl

S(ke,nlg;r) = Nk, nJ)rse™ xF(l, +1-n,2l_ +2,2k )

(21)
N(nyl,) =£(2/n1)'1( (n, +1,)! J
nZ (2, + ! (n, =1, - D!
N(k,,nJ,) = (2ks)'5”( (n, +1,)! J
@, +DI (n, +1, -1

The matrix € ement between hydrogenic and Sturmian wavefunction is written as:
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! mdng =1 =1\ (g +1g K+ p+1)!
(M1 r ks nsls) = N(nalN(k, Nl ) x G LE L [1 1 ]Mx

(Ks +i)ll+|s_K+2 p=0 p (2 +p+D!
ny
(22)
P

- 2k

W =2 ) lg+1-ngly +lg—k+p+22l +2 =
ks+1/n1 k +

S

n

It can be seen that the needed dipol e radial matrix € ements have structure similar to the well
known Gordon formula for dipole matrix € ements between hydrogenic bound states. The sum can
berecast in the form of a Taylor-like series expansion

The hypergeometric function F(ab,c;z) has a general expression valid for any m and n
integer, a and z complex, such that 1-z is not a negative real number:

F(-a,m+1n+1z)=
()" M@ -z)2rnm

mi(a +1),,2"

oA CYPp-my (23)
m! p=m+l (n-p!(a +1)p

J(m m+1
|:Z[p](n_m)m—p(G+1)pzp +(_1)

p=0

n n!
where, isthebinomiad coefficient = ———— and a, is the Pochhammmer symbol = 1 if
m (n=m)im
n=0 and a(a+1)...(at+n-1)for positive integer n. If m > nthe second term is absent and the first sum
rangesfromp =ntom.

The pair-coupling scheme requires to include as CIll symmetries. 'S°*P°°D® for J=0% and
PP 3° 3P0 3p° 3PP °D° 5F° for J=1°. After recoupling for J=0° and J=1°, there are 28 and 72 channels,
respectively.

Our results for effective quantum numbers are in very good agreement with those reported by more
sophisticated method in the Ref. 8. Table 1 shows part of these resullts:

Table 1. Effective quantum numbers relative to °S i onization threshol d.

state this work Ref.8.
2s3s (*SY) 2.64483 2.6649
4s 3.64148 3.6411
5s 4.52235 4.5649
10s 9.65381 9.6444
2p125p(P°) 4.86043 4.8609
6p 5.85108 5.8614
7p 6.86591 6.8631

We have implemented the above discussed method to output val ues of bound-free Gaunt
factors for 3p-nsand 3p-nd seriesin Clll. Resultsaregivenin Figs.1 and 2.
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5. Conclusions

In the present work we have considered the possibility of using the Sturmian representation
of the wave function and Coulomb Green's function in energy to calculate effective quantum
numbers and Gaunt factors for a system with four eectrons. The present formalism is unable to
derive the threshol d energies, therefore in computations the experimental val ues would be we come.

As a results, one must consider the present work as a caculation of quantum defect rather
than energies. By representing the continuum states in the Sturmian representation, a new technique
more efficient, with same accuracy or better than R-matrix can be implemented to cal culate atomic
data for complex atoms in plasma. In our calculation, we used the effective quantum numbers
obtained in the pseudo-state/R-matrix method, within the high optimization offered by close-
coupling [9].

It is wedl known that the Gaunt factor has a decreasing feature when photon energy is
increased. By comparing our results with those calculated [1] in LS coupling at same energy range
and using a hydrogeni c approxi mation we can conclude on the following issues:

— the use of jk gives the proper description of many-€lectron atomic systems into the
plasma;

- the alternative way of using the effective potential of Slater type, can be only
regarded as improved cal cul aions;

- anew, more efficient, methods should be adopted to describe many € ectron systems
into the plasma, which could replace the more sophisticated R-matrix code; to this aim,
we have considered a recently devel oped perturbative approach for doubly-excited level
positions [10]; our results for effective quantum numbers are in very good agreement
with those reported by K. Berrington in the Ref. 9.
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