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In this work we will consider the possibil ity of using the Coulomb Green’s function for the 
calculation of both, bound and quasi-continuum state energy of a system with two active 
electrons outside closed shell. Our approach is based on the Sturmian representation of the 
wavefunction for the free electron. The corresponding effective quantum numbers for bound 
and continuum states are included into the calculations of free-free and free-bound Gaunt 
factors. The l ink to the experiments is the abil ity of the models to generate synthetic spectral 
features which can assist in analysis of observed spectra. Comparisons with other methods 
are also provided. 
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 1. Introduction 
 
 In the fitting of observed spectra for diagnostic analysis, it is generally the relative 
intensities of a set of connected spectrum lines which allow inference of underlying plasma 
parameters. It has been recognized that, for new approaches to spectroscopic measurement of 
enhanced diagnostic impact, earlier systematic large-scale production of atomic data should be done. 
The effective recombination and ionization rates and emissivities must be known (and at a finite 
electron density) for modeling and analysis the plasma. The light element ions, such as carbon ions, 
are radiators in the divertors of fusion plasma, albeit at higher electron densities and with strong 
influence of wall and recycling sources. Moving away from the divertor strike zones towards the 
confined plasmas, we progress through higher ionization stages up to the bare nuclei of carbon, 
nitrogen, oxygen along with protons and electrons. The emission, though, is complex, with a 
bremsstrahlung contribution along with spectrum lines which appears to be non-thermal. Partially 
ionized ions of elements such as silver and palladium in the first long period, and tungsten and 
tantalum in the second long period, however, have two problems, an atomic structure which 
increasingly should be described in intermediate coupling and a consequent description of their 
emitted spectrum lines into very many separated levels from many transition arrays often associated 
with partially inner shells. The spectral emission may appear as a quasi-continuum. For the quasi-
continuum, rather than individual l ines, we can treat spectral intervals. Such spectral intervals can be 
those corresponding to particular spectrometer. 
 On the other hand, from the excited population models, synthetic spectra can be calculated 
and the significant point is the flexible separation of the spectra, which may be grass-like in their 
complexity at high resolution, into transition array envelopes at lower resolution which are 
characteristic of the emitter. The generalized collisional-radiative coefficients from the population 
codes provide the source terms for the ionization balance. The most relevant groups of atomic 
coefficients for plasma modeling are the photon emission coefficients and the energy emission 
coefficients. The former enter the statistical balance equations (that is number of conservation) and 
the latter the energy balance equations. Maxwell averages of the free-free and free-bound 
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coefficients are also required for thermalised electron plasmas. To have a spatially non-equilibrium 
balance we need to express all these coefficients by using Gaunt factors. 
 The present paper is mainly addressed to plasma physics community drawing attention to 
the uncertainty coming from atomic data calculation. The present paper’s main concern is with 
ensuring the completeness of Gaunt factors effects in effective ionic charge modeling and not with 
all the consequential modeling of populations and ion distributions in plasma. The key issue then is 
the starting point of uncertainties in the fundamental component reaction rate coefficients. Where 
does the error in a fundamental reaction rate (mostly theoretical) come from? The uncertainty in 
collisional-radiative coefficient is a composite of uncertainties in the possibly very many 
contributing individual reaction. 
 The work proposes a new method for evaluation of bound-bound, bound-free and free-free 
Gaunt factors. The underlying theoretical development is the building up of a capacity for full 
generalized collisional-radiative modeling of many electron, heavy systems in arbitrary, possibly 
high, states of ionization. The model is designed to complement the models used for few electron, 
light systems. The link to the experiments is the ability of the models to generate synthetic spectral 
features which can assist in analysis of observed spectra. Particularly, we have used the Coulomb-
Green’s function for the calculation of both, bound and continuum state energy. The positions of 
atomic states are analyzed using a Sturmian expansion of the Coulomb Green’s function. The 
method is applied to low doubly excited states of a system with two electrons outside closed shell. 
This representation is modified twofold. Firstly, the Sturmian term respects the same radial equation 
as bound-hydrogenic wavefunction. Thus, the summation on the outer – electron principal quantum 
number can be performed exactly; secondly, it helps to make clear the connection between the CGF 
formalism and a new technique which has been developed more recently in order to obtain high-
order perturbative corrections to hydrogenic wavefunctions and energies. Application refers to Be-
like C as an example. 
 
 

 2. Gaunt factors and derived atomic quantities 
   

 The basic formulation for Gaunt factors is single configuration Russel-Saunders coupling. 
At the fine structure resolution level, the generalized Gaunt factors are written as [1]: 
 

a) free-free Gaunt factor:    
 

      ( ) ( )[ ]'''', JSLlLSlSLJLSg pppp
III κκ                                                     (1) 

 
b) free-bound Gaunt factor: 
 

 

     ( ) ( )[ ]'''', JSLlLSlSLJLSg pppp
II νκ                                                      (2)       

                                                           
c) bound-bound Gaunt factor: 
 

( ) ( )[ ]'''', JSLlLSlSLJLSg pppp
I νν                                                       (3) 

 
where, SpLp denote the spin and orbital quantum numbers of the state γ (that is the parent state of the 
z +1 times ionized ion), ε, ε’ , κ, κ’  are defined by ε = κ2 = E/z1

2IH , ε’  = κ’2 = E’ /z1
2IH for free states 

( z1 = z + 1), ν and ν’  are the effective principal quantum numbers for the quantum shells n  and n’ , 
being defined by ε= -1/ν2 = E/ z1

2IH, ε’= -1/ν’2 = E’ / z1
2IH, for bound states ,  IH =13.6 eV. 

 The usual Einstein coefficients, the stimulated emission rate, the stimulated recombination 
coefficients and the radiative recombination coefficients, can be described in terms of Gaunt factors: 
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where, ν=(z0

2IH/h)(1/n’2-1/n2) is the frequency of the n → n’  photon, and gI
n ,n’  the bound-bound 

Gaunt factors.  
 The excitation rate is written as: 
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and the de-excitation rate for hydrogenic ions by electrons is given by: 
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for n’  > n. In general an effective P-factor is deduced from more complex coll ision cross-section 
calculations or experimental cross-section measurements.  
 In a similar manner the bound-free rates are obtained in terms of the bound-free Gaunt 
factors, gI I

n,κ.. With a Planck radiation field of energy u(ν) at temperature Tr and dilution W, the 
photo-ionization rate coefficient from the level n is given by: 
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The stimulated recombination coefficient is: 
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and the radiative recombination coefficient is defined as: 
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where,  In=z0
2IH / n

2, Te  is the Maxwellian free electron temperature.  
 The local photon emissivity ε (λ) at a given wavelength is written as: 
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ε (λ) is given in units of [photons/ s . sr . m3 .Å].  
 The only thing that changes when bremsstrahlung is treated quantum mechanically is the 
Gaunt factor.  
 
 Usually, semi-analytical methods based on the works by Burgess and Seaton [2], Peach [3] 
or Bates-Damgaard [4] are used to determine the asymptotic series expansions of the radial wave 
functions in the pure Coulomb regime. Moreover, closed analytical expression are available for the l 
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summed Gaunt factors in the hydrogenic case [4]. Simple fittings to these ones have been given by 
Burgess and Summers [1]. 
 In a pair-coupling , jk , scheme ( Ji  + l = K and K± ½ = J, where Ji is the total angular 
momentum of the target state, l is the orbital momentum of the added electron and ½ its spin) Gaunt 
factor is written as follows: 

2

2
',

' ''

32
),( �� �=

r

dr
FFlkkg

iiii lklk
ll

ii π
 where Li  + Si = Ji,  Ji + li = K and Ks = JT.                   (11) 

 
 

 3. Method of calculation 
 
 Our proposal is to consider the possibility of using the Coulomb Green’s function for the 
calculation of both, bound-free and free-free Gaunt factors. The method has been suggested from the 
multiphoton calculations where there are three different representations of the Coulomb Green’s 
function: momentum space representation, co-ordinate space representation and Sturmian 
representation. The last one is dated 1970 when Hostler [5] derived so-called Coulomb Sturmian 
functions.  
 Our approach is based on the Sturmian representation of the wavefunction for the free 
electron. The advantage of using this representation is coming from the fact that the Sturmian term 
respects the same radial equation as bound-hydrogenic wavefunction. Thus, the summation on the 
outer – electron principal quantum number can be performed exactly. The radial components of the 
Coulomb Sturmian functions are solutions of the equation: 
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where, the parameter x, Re x >0 is kept fixed and n is a positive integer. Accordingly, for                     
x = (-2Ω)1/2, they provide a natural expansion basis for Gl  (r,r’ ;Es). 
 Besides a normalisation constant, the radial Sturmian functions have a structure similar to 
those of bound-state hydrogenic functions: 

                   )2()2)(exp()()( 12
1,,, xrLxrxrxNrS l
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where, 12
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l
lnL  are Laguerre polynomials and the normalisation factor reads 
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A few specialized analytical expressions in terms of hypergeometric functions of several variables 
are available for three-photon dipole transition amplitude. These formulae have been derived with 
the help of the results obtained for the second-order perturbative corrections to a given hydrogenic 
wavefunction. More general (multiple-) integral representations have also been derived and again, 
the Sturmian approach reveals itself to be more useful in computations [6]. The N-photon amplitude 
is written as an (N-1)-order sum running over discrete Sturmian states. A typical N-order radial 
component entering the general transition amplitude equation associated to an N-photon transition 

from state 00, ln  to Nln,  reads: 
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where lnJJ Rx ,,2Ω−= are radial hydrogenic wavefunctions,
JJ lS ,ν are radial Sturmian 

components, and the Sturmian index obeys νJ ≥ lJ + 1 with lJ = lJ-1 ± 1. 

The dipole matrix elements 
11,, −− JJJJ ll SrS νν , between Sturmian and/or hydrogenic radial 

components are always reducible to a combination of hypergeometric polynomials, which can be 
computed to within any chosen accuracy. 
 
 
 4. Results. System with 4 electrons: 1s2 n2l2n1l1( Be-like) 

 
 We consider a system with 4 electrons: a closed shell core plus two active electrons, named 
valence electron with n2l2j2 and Rydberg electron with n1l1 quantum numbers. The proper description 
of a such system is a pair-coupling scheme: Ji + l = K   and K + ½ = J, where Ji is the total angular 
momentum of the target state, l is the orbital momentum of the added electron and ½ its spin. 
In the case of photoionisation of CIII, the main resonances are those of 1s22pns 1P0

1 and 1s22p d1P0
1.  

Following Bethe and Salpeter [7] the Hamiltonian for a such system can be written as: 
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ξ = 1 for alkaline-earth atoms, but isoelectronic sequences may be considered as well. 
 

In the perturbation expansion, the solution of this Hamiltonian is: )2()1()0( EEEE ++=  where : 
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222 jlnE being the parent-ion energy. 

 
The first order shift E(1) is obtained after multipolar expansion of V (i.e.(first-order) configuration 
mixing): 
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 The second order shift: both electrons are in perturbing state (n0l0j0,νls) implies a sum over 
the principal quantum numbers of the perturbing state (n0 ,ν) including the discrete and continuum 
part of the spectrum. However, the sum over n0 may usually be restricted to a discrete and even 
finite one: 
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where the denominator is: 
 

                                          ),(),( 00011222 ss ljlnElnjlnEEE νν −=−                     (18) 

 
and ‘Coulomb Green’s function energy’  is given by: 
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and E(ν)=-ξ2/2ν2      for a discrete state and any positive number for a continuum state. 
 e wil l assume the net charge ξ =1; otherwise, it is easy to state that the first order hydrogenic 
element scales as ξλ+1 while the second order involved in E(2) scales as ξλ

1
+λ

2
. 

 We have to emphasize that E(1) includes the interaction of the outer electron with the core 
polarised by the inner electrons. One has to consider core polarisation by the outer electron: this wil l 
give rise to an additional term in energy shift; moreover, if there are quasi-degenerate states, the 
non-diagonal matrix elements is easy to be write. In this work we concentrate on the possibility of 
using Sturmian representation for calculating effective quantum numbers. 
 
Analytical representation of Coulomb Green’s function is: 
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Es = -1/2κ2= -ks
2/2   

 
The product of Whittaker functions has an integral representation in terms of modi fied Bessel 
function. Starting from the relation: 
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 The matrix element between hydrogenic and Sturmian wavefunction is written as: 
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 It can be seen that the needed dipole radial matrix elements have structure similar to the well 
known Gordon formula for dipole matrix elements between hydrogenic bound states. The sum can 
be recast in the form of a Taylor-like series expansion 
 The hypergeometric function F(a,b,c;z) has a general expression valid for any m and n 
integer, α and z complex, such that 1-z is not a negative real number: 
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 and na is the Pochhammmer symbol = 1 if 

n=0 and a(a+1)…(a+n-1)for positive integer n. If m > n the second term is absent and the first sum 
ranges from p = n to m. 
 
The pair-coupling scheme requires to include as CIII symmetries: 1Se,3Pe,5De for J=0e; and 
1P0,3S0,3P0,3D0,5P0,5D0,5F0 for J=10. After recoupling for J=0e and J=10, there are 28 and 72 channels, 
respectively.  

 
Our results for effective quantum numbers are in very good agreement with those reported by more 
sophisticated method in the Ref. 8. Table 1 shows part of these results: 
 
 

Table 1. Effective quantum numbers relative to 2S ionization threshold. 
 

state  this work Ref.8. 
2s3s (1S0) 
    4s  
    5s 
    10s 
2p1/25p(3P0) 
       6p 
       7p 

2.64483 
3.64148 
4.52235 
9.65381 
4.86043 
5.85108 
6.86591 

2.6649 
3.6411 
4.5649 
9.6444 
4.8609 
5.8614 
6.8631 

 
 We have implemented the above discussed method to output values of bound-free Gaunt 
factors for 3p-ns and 3p-nd series in CIII. Results are given in Figs.1 and 2. 
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Fig.1.                                                                         Fig. 2. 

 
 
 5. Conclusions 
 
 In the present work we have considered the possibility of using the Sturmian representation 
of the wave function and Coulomb Green’s function in energy to calculate effective quantum 
numbers and Gaunt factors for a system with four electrons. The present formalism is unable to 
derive the threshold energies, therefore in computations the experimental values would be welcome. 
 As a results, one must consider the present work as a calculation of quantum defect rather 
than energies. By representing the continuum states in the Sturmian representation, a new technique 
more efficient, with same accuracy or better than R-matrix can be implemented to calculate atomic 
data for complex atoms in plasma. In our calculation, we used the effective quantum numbers 
obtained in the pseudo-state/R-matrix method, within the high optimization offered by close-
coupling [9].  
 It is well known that the Gaunt factor has a decreasing feature when photon energy is 
increased. By comparing our results with those calculated [1] in LS coupling at same energy range 
and using a hydrogenic approximation we can conclude on the following issues: 

− the use of jk gives the proper description of many-electron atomic systems into the 
plasma; 
− the alternative way of using the effective potential of Slater type, can be only 
regarded as improved calculations; 
− a new, more efficient, methods should be adopted to describe many electron systems 
into the plasma, which could replace the more sophisticated R-matrix code; to this aim, 
we have considered a recently developed perturbative approach for doubly-excited level 
positions [10]; our results for effective quantum numbers are in very good agreement 
with those reported by K. Berrington in the Ref. 9.  
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