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The new theoretical outl ine for determination of the metal crystall ite nanosize and lattice 
strain from X-ray diffraction line profi le broadening is discussed. Emphasis is made on the 
rigorous analysis of the l ine profiles in terms of Fourier transform. Fermi generalized 
distribution function for single X-ray l ine profile approximation is used in order to determine 
the crystallite size and the lattice strain by the deconvolution technique. The microstructural 
parameters are obtained by the use of the Warren and Averbach theory and are included in 
the general form of the Fourier transform of the true sample. A comparison of 
microstructural models of the supported nickel catalysts determined by various analytical 
approximations is presented. Practical examples that emphasize the influence of the ideal 
standard line profiles of supported nickel catalysts as experimental samples are given. The 
measurements were performed on Beijing Synchrotron Radiation Facilities. 
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 1. Introduction 
 

X-ray di ffraction line profile analysis is a versatile nondestructive method that can be used 
in obtaining nanostructural information (averaged over a moderately large volume about 1 mm3) 
about supported metal catalysts used in oxidation, redaction, isotopic exchange and hydrogenation 
reactions. From the position and broadening of X-ray line profile (XRLP) are obtained the imperfect 
crystallite structure in terms of effective crystallite size and microstrain as lattice disorder. 

The purpose of this paper is to point out theoretical aspects of determining the metal 
nanoparticle size and the lattice distortion using various analytical approximations as well as general 
formula based on Warren and Averbach theory. The results are exempli fied by analyzing two 
samples of nickel catalysts: 85 at. % Ni/Cr2O3 and 98.8 at. % Ni/UO2. The analytical models are 
implemented in our XRSIZE computer package program.  
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 2. Theoretical background - procedures for X-ray line profile analysis 
 

X-ray diffraction pattern of a crystal can be described in terms of scattering intensity as 
function of scattering direction defined by the scattering angle 2

�
, or by the scattering parameter 

s=2sin � / � , where �  is wavelength of the incident radiation. Experimentally one can measure the 
integrated intensity profi le function h(2

�
) or h(s) for the crystals. We shall discuss the X-ray 

diffraction for the mosaic structure model in which the atoms are arranged in blocks, each block 
itself being an ideal crystal, but with adjacent blocks not accurately fitted together. The experimental 
X-ray line profile (XRLP), h, represents the convolution between the true sample f and the 
instrumental function produced by a well-annealed sample, g, and it is described by the Fredholm 
integral equation of the first kind [1]: 

 

( ) ( ) ( )
�

−= *** dssfssgsh                  (1) 

 
From mathematical point of view, the true sample function, f(s), as a solution of eq. (1) can 

be obtained by three distinct methods: Fourier transform [2], regularization [3, 4] and the third order 
spline functions [5]. If one chooses the first one, the true sample function can be obtained by the 
relationship, 

 
( ) ( )LFLGLH =)( ,        (2) 

 
where F(L), H(L) and G(L) are Fourier transforms (FT) of the true sample, experimental XRLP and 
instrumental function, respectively. The variable L is the distance perpendicular to the (hkl) 
reflection planes. The crystallite size and lattice disorder can be analyzed as a set of the independent 
events of likelihood concept. The normalized F(L) can be described as the product of two factors, 
F(s)(L) and F( � )(L). The factor F(s)(L) describes the contribution of crystallite size and stocking fault 
probability while the factor F( � )(L) gives information about the microstrain of the lattice. Based on 
Warren and Averbach theory [6], the general form of the Fourier transform of the true sample for 
cubic lattices is given by relationships, 
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where Deff(hkl) is the effective crystallite size, < � 2>hkl is the microstrain of the lattice, 
2222

0 lkhh ++=  and 22
0

22 /2 ahC π= . 

It is known that whenever two or more X-ray line profi les (XRLP) of the same (hkl) plane 
family are present, the particle size and the lattice disorder effects can be separated. Raitieri, Senin 
and Fagherazzi [7] investigated the global structure of Cu filings for (111) and (222) XRLP and their 
results are based on following relation,  
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Their structural results are obtained by linear analyzing of eq. (4) as shown in Fig. 1. X-ray 

line broadening investigations of the nanostructured materials such as supported metal catalysts have 
been limited to find the average crystallite size from the integral breadth or the full width at half 
maximum (FWHM) of a diffraction profile. In the case of supported metal catalysts, it is impossible 
to obtain two orders of the same (hkl) profile due to the difficulty of performing satisfactory 
intensity measurements on the higher-order reflections. Consequently, it is not possible to apply the 
classical method of Warren [1]. 
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Despite the numerous studies, the global microstructure parameters based on single XRLP 

analysis are incompletely elaborated because many authors have used the approximate relations for 
Fourier transform of the true sample. Some of them are given in Table 1. 

The integral width � [F] of the Fourier transform of the true sample from eq. (3) contains the 
crystallite size as well as the microstrain of the lattice and it is given by relationship, 
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where 
2

2
0

222

a

hLεπ
β = , 

effD

L=γ  and erf is the error function [21]. For large crystallite size )0( →γ  

the integral width can be approximated with the relation  
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If we take into consideration the uncertainty relations between integral widths of direct and 

inverse Fourier transforms [22, 23], we can estimate ][ fδ  by the relation, 

π
δδ

4

1][][ ≥Ff        (7) 

The general form of the true sample function f(s) is given by inverse Fourier transform of 
F(L)  
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2s  and erfc is the complementary error function [21]. 
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Fig. 1. Ln[1000 F(L)] as a function of 2222
0 lkhh ++=  for several L values, (111)-(222) 

orders of XRLP. Cu sample cold-worked at room temperature. 
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Table 1.  Single X ray l ine profile analysis. 
 

References Assumptions Procedures 

R. S. Smith [8] 
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The integral width of the narrow true sample function )0( →γ can be expressed with the 
relation 
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The functions of F(s)(L) and F( � )(L) can be described as the Fourier transform of the following two 
distributions: Cauchy, PC , and gaussian, PG 
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The first distribution contains the crystallite size and stocking fault probability while the 
second one contains the microstrain of the lattice. Based on Fourier transform proprieties, the true 
sample function can be described by an equivalent relation, 
 

( ) ( ) ( )
�∞
∞−

−= dssPssPsf GC *             (11) 

 
In the literature, relation (11) for explicit forms of PC and PG is called Voigt distribution. 

Unfortunately, the integral from eq. (11) can be performed only by numerical methods [24]. Because 
of this reason, many authors have considered that XRLP can be approximated by Voigt or pseudo 
Voigt (pV) distributions [25, 26]. The integral widths Cδ , Gδ  of PC and PG distributions, expressed 

in the reciprocal space units are given by following relations, 
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In terminology of PC and PG distributions, Fourier transform of the true sample, F(L), is 
given by an equivalent relation, 
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and its integral width can be expressed with another equivalent relation,  
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The values of Cδ and Gδ  for each observed XRLP can be refined by means of condition 

 

[ ] min,)()( 2exp =−
�

L
hkl

calc
hklL LFLFw     (15) 

 

where )(LF calc
hkl , )(exp LFhkl , Lw  are given by eq. (13), Fourier transform of true sample obtained 

from experimental data, and weight factor. 
  
 

3. Results and discussion 
  

The analytical models were applied on two catalyst samples prepared by coprecipitation and 
impregnation. The following samples were investigated: 85 at. % Ni/Cr2O3 and 98.8 at. Ni/UO2. The 
standard sample is a well annealed nickel black powder.  

The X-ray diffraction (XRD) measurements were carried out at Beijing Synchrotron 
Radiation facil ities (BSRF) in 4W1C beam lines operating at 30-50 mA and 2.2 GeV with an energy 
resolution of 1-3 eV at 10 KeV, at room temperature [27]. The X-ray wavelength for XRD 
experiments was adjusted to 1.8276 � . A NaI (Ti) detector was used and the signals were amplified 
and fed to a single channel analyzer (ORTEC 850) read out by a computer. 

Practically, it is not easy to obtain accurate values of the crystall ite size and microstrain 
without extreme care in the experimental measurements and analysis of XRD data. The XRLP 
Fourier analysis validity depends strongly on the magni tude and nature of the error propagated in the 
data analysis. Three systematic errors have been discussed [23, 28]: uncorrected constant 
background, truncation and the effect of sampling the observed profi le at a finite number of points 
that appear in the discrete Fourier analysis. 
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In order to minimize the propagation of these systematic errors a global approximation of 
the XRLP is adopted instead of the discrete Fourier analysis. Therefore, herein, the analysis of 
diffraction line broadening in X-ray powder pattern was analytically calculated using generalized 
Fermi function (GFF) facil ities [16-20, 23]. 

 

 
 

In this paper we analyze only (111) profiles. Their relative intensity for the investigated 
samples as well as for the standard sample with respect to the diffraction angle, after background 
correction, were presented [16]. Figs. 2(a) and 2(b) show the calculated Fourier transform of                    
85 at. % Ni/Cr2O3 and 98.8 at. Ni/UO2 samples approximated by its analytical relation [16, 18] using 
GFF distributions for the experimental and instrumental functions and fitted by relation (3).              
Figs. 3(a) and 3(b) describe the true sample functions for the same catalysts obtained by the 
deconvolution technique and relation (8). In both cases the curves exhibit good similarities.  
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Fig. 2. Fourier transform of true samples (111) for Ni/Cr2O3 (a) and Ni/UO2 (b); 
dots eq.(13), solid line ref. [16, 18]. 
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Table 2. Structural parameters of nickel supported catalysts investigated. 
 

Integral widths Deff  and < � 2 >111×10-4 
pol. approx. 
ref.[12-20] 

rel. (3) Scherrer 
ref. [14] 

Name 
of 

sample 

� [g] or 
� [h] 

×10-2 

 
[1/Å] 

ref.[16,18]  

� [f] 
×10-2 

 
[1/Å] 

ref.[16,18] 

� [f]
C and � [f]

G 
×10-2 
[1/Å] 

rel. (12) 

� [F] 
 
 

[Å] 
rel.(5,14) 

2nd ord 
[Å] 

3rd ord 
[Å] 

 
[Å] 

 
[Å] 

Ni 
black 

0.2852 - - - - - - - 

Ni/ 
Cr2O3 

1.2070 1.1230 
0.5682 
0.7568 

86 
69 

0.3636 
62 

0.4065 
88 

0.3773 
178 

- 

Ni/ 
UO2 

0.7209 0.5852 
0.3731 
0.3343 

165 
148 

0.1235 
164 

0.1308 
134 

0.0736 
342 

- 

 
 

The main results regarding the investigated supported nickel catalysts are summarized in 
Table 2. The second up to fourth columns contain the integral widths of the instrumental and 
experimental profi les, the true sample and its Cauchy and gaussian contributions of XRLP expressed 
in reciprocal space units. The fi fth column gives the integral width of the Fourier transform. The 
integral widths of the true sample functions and its Fourier transform are in agreement with relation 
(7). The next three columns contain the crystallite size and microstrain parameters determined by the 
2nd and 3rd polynomial approximation [12-20] and relation (13) of the F(L) distribution, respectively. 
The last one indicates the crystallite size of investigated samples calculated by Scherrer formula. 

There are large di fferences between global structural parameters corresponding to each 
computation technique. The nanostructural parameters determined by polynomial appro-ximations 
are very sensitive to the interval limits chosen for the fitting technique. The literature does not 
indicate a reliable prescription for choosing them. This situation is caused by the fact that the F(L) 
function is approximated only by a polynomial portion. In spite of many published results, we 
consider that polynomial approximations give reliable information for structural parameters only for 
large value of the integral width, that means crystallite size less than about 150 Å. 

The most valuable formula for global microstructural information obtainable from XRLP 
analysis is general relation (13). This relation is valid for any value of L variables and it is not 
sensitive for interval chosen because the Fourier transform of the true sample is defined on the 
whole real axis. Our results determined by polynomial distributions are based on approximations 
when L→0 from the relation (13). The definition interval is moved until the obtained results are 
similar to the ones obtained with the general formula.  

In many cases, in literature are reported results obtained only by Scherrer relation, for quite 
large values of the integral width, without taking into account the contribution of the disorder 
parameter to the line shape. This can be reflected in ambiguous results. 

The microstrains of lattice can also be correlated with the effective crystall ite size in the 
following ways: the value of the effective crystallite size increases when the microstrain value 
decreases, and reverse.  
 
 
 5. Conclusions 
 
 In the present paper it is presented a theoretical analysis of X-ray line profile applied to the 
global structure determination of the supported nickel catalysts used in reactions as: reduction, 
oxidation, hydrogenation and isotopic exchange between hydrogen and deuterium. Their global 
structures can be correlation with the intrinsic catalytic activity. The conclusions that can be drawn 
from this study are: 
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(i) For XRLP analysis, a global approximation by GFF distribution is applied rather than a 
numerical Fourier analysis. This can minimize the systematic errors that appear in the traditional 
Fourier analysis; 

(ii)  The approximate forms of the Fourier transform are valid only for small crystallite size, less 
than 150 Å, and its general form can also be used use for any value of the variable L; 

(ii i) The new analytical true sample function and its approximation is one of the most general 
formula that contains the Cauchy and gaussian contributions; 

(iv) XRSIZE package program contains all the methods described in the second section and it 
has a user's friendly interface. 
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