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The present work is a theoretical study aiming at understanding the role of the electronic 
temperature on the optical response of simple metal clusters. The electronic temperature 
dependence of the optical response of simple metal clusters is investigated by many different 
quantum mechanical theories. The bulk dielectric functions are the most important quantities 
of a quantum many-electron system. Here we use of bulk dielectric function theory for 
calculating of longitudinal and transverse dielectric functions in the quantum many-electron 
system.  
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1. Introduction 
 

The electronic temperature dependence of the optical absorption of simple metal clusters is 
investigated in the framework of bulk dielectric function. In the following atomic units 
( 14 0 ==== πεme

�
) are used unless otherwise specified and Bk  is the Boltzman’s 

constant. 0a =0.529 Å is the Bohr radius and e denotes the absolute electron charge. The quantities 

with a barre are dimensionless. 
 

 
2. Theoretical model bulk dielectric functions   

 
A. Longitudinal 

 
The bulk longitudinal dielectric function is one of the most important quantity in discussing 

the dynamical properties of a quantum many-electron system in a linear regime. It’s first use in 
many-body theory is due to Nozières and Pines [1]. For an infinite system it is well known that in 
the case of a homogeneous electron gas the retarded dielectric function depends only on the 
difference between the space coordinates and time. 

 

).;.( trtrl ′′��
ε );( ttrrRl ′−=′−== τε ��� . 

 

It is then convenient to work in the momenta and frequencies space leading to  
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The above quantity characterizes the linear response of the medium to a longitudinal 
electromagnetic perturbation of wave vector q�  and frequency ω . If the homogeneous electron gas 

is perturbed by an external potential );( ωqVext � then the total potential inside the system );( ωqVext � , 

is given by  
 

                                         ),();();( 1 ωωεω qVqqV extltot ��� −=                                                     (2) 

 
If for a particular complex frequency rω~  the total field inside the medium becomes large 

even for infinitesimally small external potential then the system is in an eigen –resonance. Thus it 
results from Eq. (2) that the condition for plasma oscillation in the electron gas is given by  
                                           

                                        0)~;( =rl q ωε �                                                                      (3) 

 
These free charge oscillations are characterized by the fact that we can have a field in the 

system even in the absence of a driving external potential. Since )~;( rl q ωε �  is a complex function 

the equation (3) has no solutions for real values of rω~ . There are however, approximate solutions by 
setting the real part equal to zero. Thus, the condition for plasma oscillation (3) is replaced by 
 

                                           0);( =′ rl q ωε �                                                                 (4) 

 
where [ ]rr ωω ~Re=  is real . In the following the frequency ω  is real. One defines also the so –

called energy-loss function 
22

1
Im

ll

l

l εε
ε

ε ′′+′
′′

=
	
��
�

−  which is related to the excitations of the 

quantum system and to the sel f-energy [2,3]. In the linearized time-dependent Hartree theory (this 
approximation is also referred to as the random phase approximation (RPA)) or the sel f-consistent-
field method (SCF) [4], the longitudinal dielectric function of a 3-dimensional  homogeneous 
electron gas reads [5] 
 

                              );()(1);( 0 ωχωε qqVql �� −=                                                      (5) 

where 
2

24
)(

q

e
qV

π=  and );(0 ωχ q� are respectively, the Fourier transform of the coulomb energy 

potential and the non-interacting retarded density correlation function. The latter is given by  
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where 
1

1
)(

)( +
= − FpeF

e
pn µβ ��

is the Fermi-Dirac function which depends on p� only through the 

electronic energy 
m

k

m

p
pp 22

222 �� === εε  , 
eBTk

1=β  and Fµ  is the Fermi chemical potential. In 

the above formula, the variable η  has been originally introduced by Lindhard for causality 
requirements [6]. The existence of an infinity of poles in the denominator of (6) does not allow us to 
use numerical techniques to perform the integration. Note also, that a non vanishing value of η  can 
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be used in order to take the finite electron li fetime δητ ≡=− �1
e  into account within the so-called 

relaxation-time approximation [7,8]. 
The Fermi chemical potential Fµ  is solution of the equation [9] 

 

                                             BFS αβµ =− )
2

1
,(                                                                 (7) 

with the Sommerfeld’s function  

                                       S(
�∞

+ ++Γ
=

0
)( 1)1(

1
),

zF
Fe

dzz
α

ρ

ρ
ρα                                               (8) 

and 

                                       3
02

1
TB ne B λα βµ =≡                                                                (9) 

where 0n is the equil ibrium particle density, Bµ is the Boltzman chemical and Tλ  is the thermal 

wave length defined by 
2

1
22 ��������=
eB

T Tmk

�πλ . If   0≥−= FF βµα  i.e. 0≤Fµ  then 1≤≡ − FeF
αα  

and  
                                                       S ( )(), 1 FF f αρα ρ +=                                                       (10) 

 
with  

                                            ),log()1()(
1

1 ααα −−=−= 	 ∞

=

+ spoly
k

f
s

k

k

k
s                                     (11) 

 
The above series is convergent for 1≤α  and )()21()1( 1 sf s

s ξ−−=  where )(sξ  is the 

Riemann’s zeta function which is defined for 1)( 
sR  and is extended to the rest of the complex 
plane (except  for the point s = 1) by analytic continuation. By using the usual rule (Plemelj formula) 

)(
11

lim 0 zi
z

P
iz

πδ
ηη +=���
����

−→  one obtains from Eqs (5) and (6)  

              [ ]
3

3

)2(
)()()()(2);( � ������� ���� π

ωεεδπωε pd
qpnpnqVq qppFFl −−+−−=′′ +

�
             (12) 

 
The above formula may be rewritten as  

 

            pdpn
qV

q Fqppqppl ������ �������� 3
32

)()]()([
4

)(
);( ωεεδωεεδ

π
ωε −−−+−=′′ ++

�
       (13) 

 
By using spherical coordinates, the angular integration is straightforward and we get  
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−
− +

p

p
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with ωε �� ±=± qq

m
p  leading to [2] 
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where 
m

p

2

2
±

± =ε  . 

For 0=eT  one has 
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with the dimensionless quantities : )
2
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222
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with 
3

1

9

4 ��
����=

π
χ .This result is normally found in textbook [2,10]. 

This result can be also rewritten as (see also Fig. 1 and Fig. 12.9 of [10] ) 
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Fig. 1. Imaginary part of the longitudinal bulk dielectric function at 0=eT  and 4
0

=
a

rs .  

The real part of the dielectric function is obtained from the Kramers-Kronig relation  
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where the symbol denotes the principal value of the integral . After simple  
 
calculations from Eq. (15,18) one gets  
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The above principal-value integral may be evaluated numerically by using, for instance, the 

finite-interval method of Thompson [11]. This method makes use of the even-order derivatives of 
the function )1ln( x+  which can be obtained by a symbolic-differentiation program. 

For 0=eT , the longitudinal dielectric function may be expressed in terms of analytical 

functions and are known as the Lindhard formulae [6] one has  
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with the dimensionless variables, FEiw /)( δω +≡ � , 
0a

r
r s

s = , where 
20

me
a

�
=  is Bohr radius, 

ss rr χ
πππ

χ 1

9

41 3

1

=������≡ . 

 
Since, the dielectric function depends on q�  only through it’s modulus q , the dielectric 

function expressed in the real space is );( ωε rrRl 		 ′−≡  (isotropic space).  

Thus, according to (1) one can write  
 

                                          qdeqR Rqi
ll 
��

.);();( −
�

= ωεωε                                              (23) 

 
By using the well known expansion of the plane-wave  
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The same is true for the response function. Therefore, from (5) we obtain  
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For spherically symmetric systems we have  

 

                                       )ˆ()ˆ();,();(0 rYrYrrJR mm
m

′′= ∗
�

λλ
λ

λλ
λ

λ ωωχ                                  (28) 

with 

                                     duuPRrrJ )();(2);,(
1

1

0
λλ ωχπω �+

−

=′                                         (29) 

 

                                   R= urrrrrr ′−′+=′− 222��
                                                 (30) 

 
The optical response of the valence electrons is treated quantum-mechanically. Within the 

so-called local density approximation, the induced electronic density );( ωδ rn � is related to 

);( ωrVext � , the Fourier transform (with respect to time) of the external energy potential associated to 

the electric field of the laser (amplitude 1E ), by [12] 
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);())(;;();( 0 ωωχωδ                           (31) 

 
where rr �� ′−(χ ))(;; 0 rn �ω  is the retarded density correlation function or the dynamic response 

function  of a system of uniform density 0n . The local Wigner-Seitz radius is defined as 

3

1

0 )(4

3
)( �����	

=
rn

rrs π
. 

 
In the dipole approximation ( λλ whereR 
�
  is the wavelength of the incident 

radiation) the external energy potential is given by (if an electrical field 1E  is applied to the cluster 
in the z direction it causes a perturbation energy) 
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From the frequency-dependent dipole polarizability defined by  

 

rdrVrn
E

ext 


 );();(
1

)(
2
1

ωωδωα �=  

                                           = rdrdrrrrrrJ
E extext ′′′′

���∞ ∞
22

0 0

12
1

);();();,(
1 ωνωνω                        (35) 

 
one obtains the dipole absorption cross-section [13] 
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B. Transverse 

 
The transverse dielectric function of an electron gas in quantum mechanical treatment of 

electrons was obtained by Lindhard.  
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This result is found in [6].  
 

Which 
m

q
E n

n 2

22�
=  is the electron energy,

m

ne
p

0
24πω =  is the classical resonance 

frequency of the electron gas and 0n  is the equil ibrium particle density. 

The Eq. (39) after some calculations can be rewritten as: 
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By using the usual rule (Plemelj formula) one obtains imaginary part of the transverse dielectric 
function from Eq.(40)  
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The above formula may be written as two parts: 
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by using equations (42) , (43) , (44) one obtains: 
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with  
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For  0=eT  one has  
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with the dimensionless quantities κω ,,, Yq  which are defined in Eq.(16). 
 

This result is found from [6] by simple calculations (see Fig. 2). 
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Fig. 2. Imaginary part of the transverse bulk dielectric function at 0=eT  and     4
0

=
a

rs .  

                                                   
3. Conclusion 

 
In the present work we calculated by analytical and numerical methods the imaginary and 

real parts of longitudinal dielectric function and imaginary part of transverse function for a quantum 
many electron system. These results can be used in the study of the electron temperature effects on 
the optical response of metal clusters. Also we could calculate analytically the relation between the 
imaginary parts of response function and longitudinal dielectric function.   
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