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TEMPERATURE DEPENDENCE OF LONGITUDINAL AND TRANSVERSE
DIELECTRIC FUNCTIONS OF INHOMOGENEOUS FERMI| SYSTEMSIN THE
LOCAL DENSITY APPROXIMATION
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The present work is a theoretical study aiming a understanding the role of the eectronic
temperature on the optical response of simple meta clusters. The dectronic temperature
dependence of the optical response of simple metal clustersisinvestigated by many different
quantum mechanical theories. The bulk dielectric functions are the most important quantities
of a quantum many-electron system. Here we use of bulk dielectric function theory for
calculating of longitudinal and transverse dielectric functions in the quantum many-electron
system.
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1. Introduction

The dectronic temperature dependence of the optical absorption of simple meta clustersis
investigated in the framework of bulk dieectric function. In the following aomic units

(h=e=m=4re, =1) are used unless otherwise specified and k; is the Boltzman's
constant. a,=0.529 A is the Bohr radius and e denotes the absol ute electron charge. The quantities
with a barre are dimensionl ess.

2. Theoretical model bulk dielectric functions
A. Longitudinal

The bulk longitudinal dieectric function is one of the most important quantity in discussing
the dynamical properties of a quantum many-eectron system in a linear regime. It's first use in
many-body theory is due to Noziéres and Pines [1]. For an infinite system it is well known that in
the case of a homogeneous eectron gas the retarded dieectric function depends only on the
difference between the space coordinates and time.

g(FL;Ft)=¢g(R=F-F;r=t-t).

It isthen convenient to work in the momenta and frequencies space leading to
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£(0.0) = [ (R1)e* e dRd7 = £](q; &) +i€](T; ) )
The above quantity characterizes the linear response of the medium to a longitudina
dectromagnetic perturbation of wave vector § and frequency « . If the homogeneous dectron gas
is perturbed by an external potentia V,, (§; &) then the total potential inside the system V. (§; @),
is given by

Vi (0 @) = &7 (T W)Veq (G, ) )

If for a particular complex frequency o, the total field inside the medium becomes large

even for infinitesimally small externa potentia then the system is in an eigen —resonance. Thus it
results from Eq. (2) that the condition for plasma oscill ation in the dectron gas is given by

£(G,@)=0 3)

These free charge osdillations are characterized by the fact that we can have a fidd in the
system even in the absence of a driving external potentid. Since &, (; @, ) is a complex function

the equation (3) has no solutions for real values of @, . There are however, approximate solutions by
setting the real part equal to zero. Thus, the condition for plasma oscillation (3) is replaced by

£(Gaw)=0 4

where w, = Re[cT)r] isrea . In the following the frequency < is real. One defines dso the so —

8"
called energy-loss function —Im{i} :,2—' which is rdated to the excitations of the
gl

gl + EI" 2

guantum system and to the sdf-energy [2,3]. In the linearized time-dependent Hartree theory (this
approximation is aso referred to as the random phase approxi mation (RPA)) or the sdf-consistent-
field method (SCF) [4], the longitudinal didectric function of a 3-dimensiona homogeneous
eectron gas reads [5]

£ (6, w) =1-V(a) x°(G; w) (5)

477e?

>— and Y °(§; w) are respectively, the Fourier transform of the coulomb energy

where V(q) =

potential and the non-interacting retarded density correlation function. The latter is given by

: SN (P)—n:-(P+4G) 5.
1@ ) = lim 22y * [ 2P0 (P27D) g ©
n-0" E5 ~Epug ~hw=1n
where n_(p) = Wis the Fermi-Dirac function which depends on P only through the
e +
. p* _ h%k? 1 . . . .
electronicenergy £; =€, = _—— = , B= and Y isthe Fermi chemical potentia. In
2m  2m KgT,

the above formula, the variable /7 has been originaly introduced by Lindhard for causality

requirements [6]. The existence of an infinity of poles in the denominator of (6) does not alow usto
use numerica techniques to perform the integration. Note aso, that a non vanishing value of 77 can
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be used in order to take the finite eectron lifetime 7' =~ =4 into account within the so-called

St S

rel axati on-time approximation [7,8].
The Fermi chemical potentia (/- is solution of the equation [9]

1
S(=Bu 3) =ag )
with the Sommerfeld’s function
_ 1 7 Z°dz
S(a.,p) = — 8
and
a, = et =%n0/1$ (9)

where n,is the equilibrium particle density, is the Boltzman chemical and A; is the therma
1

2 2 B
wave length defined by A; :[ZkiT] A ar =—-fu- 20 iey. <0 then a. = <1
m B'e
and
S(ag,p)= fp+1(aF) (10
with
) a,k
fo(a)=2 (- 1 = ~polylog(s.—a) (11)
k=1

The above series is convergent for @ <1 and f (1) = (1-2"°)&(s) where &(9) is the
Riemann’s zeta function which is defined for R(S) > 1 and is extended to the rest of the complex
plane (except for the point s = 1) by ana ytic continuation. By using the usual rule (Plemelj formula)

”m”ﬁo(z—liq] = P% +170(2Z) one obtains from Egs (5) and (6)
dp
(2mh)®

£1(@: ) = 279 (q) [[ne () = N (P + A)(E, ~ £, ~ h0) 12)

The above formula may be rewritten as

N \% S\ 13
£1(0:69) = ;o [18(6, = £y +16) 0(E, = £y ~hOIN: (AP (1)

By using spherica coordinates, the angular integration is straightforward and we get

mv (q) "I

" pdp
& (O, w) =
|(q ) nh“q p_eﬁ(sp—/zF) +1

(14

m
with p, =h—q\eq * had leadingto [2]
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-Ble-~u)
&G w = mV(q) In 1+e_ - (15)
2n7‘14,6’q 1+e B(e—UE)
2
where €, = P )
- o2m
For T, =0 onehas
w, 0sw<2G-G°% g=<2
oy L-Sla-@if 29-9* sws<2q+ghg=<2
& w)=— - . (16)
q |0 w=20+0°; g=<2
1-2[q-@/Q); g*-20<@<2q+3% g2
o E 2 242
with the dimensionless quantities : g = —-, cT)=h—w, Y=+t :(e_)/(h Dy adr=—
Ke E- E.,, ro' 2m X
with y = Lﬂs This result is normally found in textbook [2,10].
T
This result can be also rewritten as (seealso Fig. 1 and Fig. 12.9 of [10] )
1—%[(7—(47)/(7)]2; ~1+Vlto<g<l-V1-m; @w<1
@ 1-esas1l-e @<
&(@w) = — (17)
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Fig. 1. Imaginary part of the longitudinal bulk dielectric functionat T, =0 and — =

Thereal part of the dieectric function is obtained from the Kramers-Kronig relation

£(Gw) =1+= Pmmdf (18)
(-

where the symbol denotes the principal value of theintegral . After smple

calculations from Eqg. (15,18) one gets

£ w) =1+ m;’((f)A L J_){co(x+,a) P(x.a) (19)
with
(1 2(w  hq
‘(zﬂ"‘] [a%] 0
and
~ In(1+aF
o g P 21
cor (3B

The above principal-va ue integra may be evaluated numericaly by using, for instance, the
finite-interval method of Thompson [11]. This method makes use of the even-order derivatives of
the function IN(1+ X) which can be obtained by a symbolic-differentiation program.

For T, =0, the longitudina dielectric function may be expressed in terms of analytical
functions and are known as the Lindhard formulae [6] one has

£(@Qw)=lime (Go)

B 2q+{1——(q—§) }

X q

_3 q
q

1, W,
{1_2((:] +E) }In[—

with

& (o) =1+
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1
__1{4}3_ 1
X=—|—| F,==xT..
T T

is Bohr radius,

Since, the didectric function depends on § only through it's modulus q, the di€lectric

function expressed in the real spaceis & (R =|F —'|;w) (isotropic space).
Thus, according to (1) one can write

& (Ra) = [ & (g w)e ™ dg
By using the wdl known expansion of the plane-wave

e R=3"an(-1)' j, (AR)Y,,, (@)Y (R

we obtain
& (R @) = 471 £, (q; @) jo (GR)G*dq
0

sn(gR)

ith i (QR) =
with j,(gR) R

The sameistrue for the response function. Therefore, from (5) we obtain

X (Ra)= %’TI)(‘) (s @) sin(qR)qdg

with
Xl =G
V(a)
For sphericdly symmetric systems we have
X (Ra) =2 3,(r,r )Y m, (F)Y,n, (F)
with "

J,(r,r';e) = ZITT)(O(R; )P, (u)du

R:|F—F'| =vr2+r'2-2rr'u

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

The optical response of the valence eectrons is treated quantum-mechanicaly. Within the
so-cdled local density approximation, the induced eectronic density on(r';a)is related to

V. ('; @), the Fourier transform (with respect to time) of the external energy potential associated to

the eectric fidd of the laser (amplitude E,), by [12]
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AN(T;00) = [ X(F = g (F)Vee (1 @)l G

where )((|F - F'| ;ain, (7)) is the retarded density correlation function or the dynamic response

function of a system of uniform density n,. The locad Wigner-Seitz radius is defined as
1

T3 P
") {éwmo(r)} |

In the dipole approximation (R<<A where A is the wavelength of the incident

radiation) the external energy potentia is given by (if an dectrical field E, is applied to the cluster
in the z direction it causes a perturbation energy)

Voo (F'; ) =y (1 )Yy (F') = €E, 2 (32)
Z'=r'cosf = r'% Yio(F") (33)
e “

From the frequency-dependent dipol e polarizability defined by

a(w) = éjdn(r; WV, (M w)dr

iTTJ (r,r )V, (1 W)W, (r';ch)r ?r'*drdr’ (35)
El 00
one obtains the dipol e absorption cross-section [13]
o(w) = 4Tm I m[a(w)] (36)
one needs
Imx°(R @) = 4—5 [1m}x° (@ @)]sin(aR)dg (37)
0
with
Imy°(R ) A CH) 38
W (Re]=- o (38)

B. Transverse

The transverse dieectric function of an eectron gas in quantum mechanica treatment of
el ectrons was obtained by Lindhard.
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| aa
a(a,w):1+ Zf(E) [ -(a4,) ] 1 + 1 _1 (39
q 2 . _me 2 _ oz
{ q° +244, o q°-2q4, +
Thisresult isfoundin [6].

thZ
2m
frequency of the éectron gas and n, isthe equilibrium partid e density.
The Eq. (39) after some calculations can be rewritten as:

n, . .
® js the classicd resonance

Which E, = is the eectron energy, w, =

p? - (hqf) ](n () -, (p+hd)

E,-E

£(G, ) =lim__. 2(2m)3j{ d*p (40)

peng ~ HW—IZ
By using the usua rule (Plemelj formula) one obtains imaginary part of the transverse didectric
function from Eq.(40)

& (@)= [Zﬂej I(:mr; {pz (ph(q)) } - (P0le, ~ Epung + 1)~ S, = £pg ~ )} (42)

The above formula may be written as two parts:

" N 2 2 7] N " N
& (@.0) =[miaf] & @) +e, G0 (@)
which
" d*p .,

Elt (q,&)) :I(Zm’:))g nF(p){a(gf) p+hq +ha)) 6(£ﬁ _£ﬁ+hd _h&))}

L, me’ e 1.1, In@+e”) polylog(2-e™) "

i {”ﬁm{He*”}Zv B B » o
and

£2t @)= I il pa (ph(hc?)) ”F(p){5(5 _£ﬁ+hd+hw) 5(5ﬁ"£ﬁ+ha"hw)}
_efm? [ (v+ ) |

by using equations (42) , (43) , (44) one obtains:

_ —atBy %
2me? EV“ polylog(2,—e )} 5

g(qw)_ qa)2 ﬂz
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with
p?

=t - 46
A o U (46)
p, ——E \ thad (47)
1 w1

olylog(2,2z) = -=log?(-2) - — - -1

polylog(2, 2) 29()6;k22k E

polylog(a, z) = iz—a 17 <1
nzlr|

For T, =0 onehas
—2 —2
24 [1—1[“’—2“72]] g<1+1-@ , @w<1

" VY =2 ) 2 ?
, (a,w)=% —q—z[l—%[%—aﬂ g-1+1-@ , @w<1 (49)

_2 — 2\?
—ﬂ—z[l—%[@—aﬂ +ro-1<g<i+Vl+@ , @<1
w q
with the dimensionless quantities T, @,Y, K which are defined in Eq.(16).

Thisresult is found from [6] by simple cal culations (see Fig. 2).

T
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Fig. 2. Imaginary part of the transverse bulk dielectric functionat T, =0 and — =4.
a,
3. Conclusion

In the present work we cdculated by andytical and numerica methods the imaginary and
real parts of longitudinal did ectric function and imaginary part of transverse function for a quantum
many e ectron system. These results can be used in the study of the e ectron temperature effects on
the optical response of metal clusters. Also we could calculate ana ytically the rdation between the
imaginary parts of response function and longitudinal die ectric function.
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