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Many linear and nonlinear control methods have been employed to control chaos. In 
practical applications the investigators would like to use simple and efficient controllers. The 
design of the simplest controller is an open problem yet. In this paper we applied Master-
Slave Synchronization to the chaotic Sprott’s circuits. These circuits may have practical  
application in secure communications because they can be controlled. 
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 1. Introduction 
 
 Over the last three decades, chaos in engineering systems such as nonlinear ci rcuits has 
gradually moved from being simply a curious phenomenon to one with practical signi ficance and 
applications. Chaos has been found to be useful or have great potential in many disciplines such as 
in high-performance circuit design for telecommunication, thorough liquid mixing with low power 
consumption, collapse prevention of power systems, biomedical engineering applications to the 
human brain and heart. 
 In 1963, Lorenz found the first chaotic system, which is a third-order autonomous system 
with only two multiplication-type quadratic terms but displays very complex dynamical behaviors. 
In 1999 Chen found another similar but topologically non-equivalent chaotic system, the Chen 
system being a dual system to the Lorenz system. Now there are some analytical results reported 
about these chaotic systems, which are called the Lorenz family. In addition many other chaotic 
system were reported: Duffing, Van der Pol, Rossler, Lu, Chua, Sprott and so on. Chaotic systems 
have the distinguishing feature of extreme sensitivity to variations of initial conditions. Due to this 
intrinsic dynamical complexity, chaos was once believed neither controllable nor predictable, 
characteristics that are very undesirable in engineering. Chaotic attractors contain theoretically an 
infinite number of unstable periodic orbits (UPOs). 
 Stabilizing UPOs means to control chaotic systems. So a controlled chaotic system can have 
a lot of opportunities in terms of predictable periodic behaviors and could be more useful than a 
nonchaotic one. A reliable control is more than necessary.  
 The importance of synchronization does not only consist in the practical applications that 
can be obtained, but also in the many phenomena that be explained by synchronization theory. Many 
systems can be modelled as oscil lators or vibratory systems and those systems show a tendency 
towards synchronous behaviour.  
 Since its introduction by Pecora and Carrol in 1990 chaos synchronization has received 
increasing attention due to great potential applications in many discipline such as nonlinear circuits, 
chemical reaction, biomedical engineering to the human brain and heart and so on. The state of the 
art is contained in several books [1-5] and review papers and special issues of some journals. There 
are known several types of synchronization: mutual, master-slave, weak, strong, phase and 
generalized. The methods are specific or are borrowed from control theory.  
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 One of the master-slave synchronization is the OPCL synchronization [6] and has the roots 
in the OPCL control method7. This method gives precise driving for any continuous system in order 
to reach any desired dynamics. In this paper we apply the OPCL synchronization strategy to the 
synchronization of two identical Sprott circuits8. These circuits contain only resistors, capacitors, 
diodes and inverting operational amplifiers (Fig. 1).  G(x) is a nonlinear function  presented in Table 
1 and that can be realized practically (Fig. 2).  
 

          
     Fig. 1. A general circuit [8].                                       Fig. 2. A nonlinear form for G(x) that produces  
       chaos and circuit to produce it [8]. 
 
 

Table 1 [8]. 
 

G(x) B G(x) B 
)( CxB −±  1 )/2( CCxBx −  1.6 

CxB +− )0,max(  6 )/2( CCxBx −−  0.9 

)sgn(xCBx −  1.2 [ ]CCxxB /)tanh(2−  2.2 

)sgn(xCBx +−  1.2 CCxB /)sin(±  2.7 

)/2( CCxB −±  0.58 CCxB /)cos(±  2.7 

 
 
 2. The OPCL method  
 
 The original system 
 

�x = F(x);         x∈Rn                    (1) 
 

has to be driven with the term: 
 

D(t,x,g) = �g - F(g) +(A -∂ F/ ∂ x|x=g )(x - g)   (2) 
 

in order to reach the goal dynamics g(t) ∈Rn. 
 The drived system 
 

�x = F(x) + D(t,x,g)         (3) 
 

assures the convergence x(t) → g(t), for x(0)-g(0)  small enough. A is a constant matrix with 

negative real part eigenvalues. So, any two oscillators can be synchronized: a Lorenz system can be 
driven to oscillate like a Rossler one or the inverse, but the driving term can be large and/or 
complicated.  
 Let’ s consider the master system: 
 

�X = F(X);         X∈Rn                    (4) 
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then the slave system: 
�x = F(x) + (A -∂ F/ ∂ x|x=X )(x - X) +…     (5) 

 

assures x(t) → X(t) for any x(0)-X(0)  small enough. The last terms in Eq. (5) are the couplings 

and they are a particular case of Eq. (2) with g ≡ X. An important disadvantage of this general 
method is that the coupling term could be complicated and hard to be implemented in 
practical/engineering applications. A careful choice of A gives good results. In a recent work [9]we 
applied the OPCL method to obtain synchronization of two identical systems for Sprott’s collection 
[10].  
  
 
 3. Results and discussion 
 
 The chaotic electronic Sprott’s circuits can be described by the equation: 
 

)(xGxxx =+Α+ �����       (6) 
or      
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 with X1 = x   (7) 

 

To synchronize two chaotic Sprott’s circuits we can choose A from (5) as follows:     
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      (8) 

 

 The Routh-Hurwitz conditions (for characteristic equation (8) is to have negative real part 
eigenvalues) are:  

a1 >0;  a1a2-a3>0 ;  a3>0 
The Routh-Hurwitz conditions give: 
 

)0;6.0(−∈a  for Α =0.6     (9) 
 
 Let be the circuit from Fig. 2.  This means G(x)= )sgn(xCBx −  and the system is a chaotic 
one (Fig. 3). 

 
   Fig. 3. The strange attractor for Sprott’s system with G(x)= )sgn(xCBx −  (X1(0)=1;   
                                                          X2(0)=0.1;  X3(0)=0.01). 
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The slave system (of the master system (7)) with G(x)= )sgn(xCBx −  and a=-0.5 is: 

)11(*7.15.41*2.1236.0/3

3/2

2/1

Xxxxxdtdx

xdtdx

xdtdx

−−−+−−=

=

=

 i f  X1>0 

else 
 

)11(*7.15.41*2.1236.0/3 Xxxxxdtdx −−++−−=    (10) 

 
Numerical results are given in Fig.4 for (X1, x1). 

 
 

Fig. 4. Numerical results (X1, x1) for Sprott’ s circuit with G(x)= )sgn(xCBx − (X1(0)=X2(0)= X3(0)=0.1;  
x1(0) = x2(0)= x3(0)=-0.1). 

 
2. Let be the  Sprott’s system when G(x)= [ ]CCxxB /)tanh(2− , (Fig.5) 

 
               Fig. 5. The attractor for Sprottt’s circuit with G(x)= [ ]CCxxB /)tanh(2−   
                                        (X1(0)=0.1;  X2(0)=0.01;  X3(0)=0.001). 

 
 
The slave system (of the master system (7)) with a=-0.5 and G(x)= [ ]CCxxB /)tanh(2−  is 
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)11(*))1
2cosh/21(2.25.0()1tanh*21(*2.2236.0/3

3/2

2/1

XxXxxxxdtdx

xdtdx

xdtdx

−−+−+−−−−=

=

=

  

 Numerical results are given in Fig.6 
 

 
  Fig. 6. Numerical results (X1, x1) for Sprott’ s circuit with  G(x)= [ ]CCxxB /)tanh(2−   
       (X1(0)=0.1; X2(0)=0.01;  X3(0)=0.001; x1(0) =-0.1;  x2(0)=0.01;  x3(0)=-0.001). 

 
  

  4. Conclusions 
 
 The chaotic Sprott’s circuits may have practical application in secure communications 
because they can be controlled. In addition they are very well suited for detailed quantitative testing 
of chaotic properties. The transient time until synchronization depends on initial conditions of two 
systems and on the values of negative part of eigenvalues. As we can see from Fig. 4 and Fig. 6, the 
fastest synchronization is for G(x)= [ ]CCxxB /)tanh(2− . 
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