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PERTURBATIONAL STATISTICAL THEORIESOF MAGNETIC FLUIDS
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The theories that account for the colloidal structure of a magnetic fluid give far better results
than the gastype or mean-field models. We show this by using standard perturbative
approaches of colloidal science and expressing the magnetization M(H) and the initial

magnetic susceptibility ) as Taylor series about the Langevin values M (H) and ), . One

of the methods surveyed enables the structural study of the ferrocalloid through the anaysis
of the pair distribution function. We give a poa plat of this object when an external
magnetic field H is present, showing the effect it has on the otherwise isotropic suspension.
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1. Introduction

The magnetic fluids (ferrocoll oids) are suspensions of solid magnetic particles dispersedin a
liquid carrier. The perturbative methods [4] of the statistical study of liquids are wdl suited to
colloids as wdl [5]. The use of these methods improves [10, 11] the results of the 'traditional’
approach to a ferrocolloid as being a Langevin gas of magnetic particles, i.e. an ideal paramagnetic
gas. The 'traditional’ approach neglects the interactions between particles, either steric (the particles
are coated with a layer of a surfactant solution to keep them apart) or magnetic (there is a dipole
moment associated with each magnetic particle), while the theories here presented do take these
interactions into consideration, them being the very building blocks of structure and of physical
manifestations. Of these latter, magnetization and initial magnetic susceptibility are investigated,
experimenta data sustaining our conclusions being quite consistent [1, 2, 3, 10, 11].

The final result of all gpproaches is the effect a 'Langevin + deviations' splitting in the
physical properties investigated, showing how the hard-sphere colloidal structure adjusted by the
dipolar interaction contributes to the 'traditional’ gas-type manifestations of the magnetic liquid. The
aim of this paper is to review the perturbative means of dealing with such ‘un-traditional’ behavior.
A complete but lengthy, unpublished version of this work is avaible[9].

2. Theoretical basis

The theories presented differ in the way that the energy of interparticle interaction is broken
into a 'reference part and a 'perturbation’. The case at hand is that of monodisperse suspensions of
spherical particles, generalizations being possible but generally cumbersome. The total energy of the
N dipolar hard spheres which model the surfactant-coated magnetic particles suspended in the carrier
liquid, is, when placed in an external magnetic field H:
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with Us(ij) the hard sphere repulsion of radius d between particlesi and j, the expression in
the square brackets, hereafter denoted by Ub(ij), is the interaction energy between dipoles
associated with spheresi and j, and then U,,,;(i) - the energy of the dipolei in the external field
H. Here m; is the magnetic moment of thei-th particle and r;; isthe position vector of the center of

the sphere j with respect to that of spherei. The potentias are manifestly pairwise and i ndependent
of the concentration n.

2.1 Thealgebraic perturbation method

Thisis arigorous method of perturbing the liquid of dipolar hard spheres, by switching on a
weak externd fidd; it was first described by V.I. Kalikmanov in 1992 and subsequently devel oped
[1]. The perturbational technique used by Kaikmanov is arigorous procedure devised by Ruelein
[8].

Here H, =H,+H,,,c making it dear that the perturbed system is the magnetic fluid put

in the external field, while the reference liquid is the magnetic fluid 'asis: H, = Hg+H_ . By use
of the Mayer functions corresponding to the dipole-field interactions H,,,; , theratio of the partition

function of the perturbed system to the partition function of the reference system can be put in the
exponential form through use of Rudl€'s theorem. This exponentia series converges rapidly after its
second term if the Langevin parameter mH / KT = a <1, which is precisdy the expression of the
condition that the field be small [1]. The j-th coefficient of the seriesis given by algebraic (rational)
combinations of the j-partid e correlation functions of the dipolar hard spheres, [1, 8]. We must note
that we only need the 2-particle corrdation functions but the actua cdculations use the
perturbational expression of it [4]. Tedious work leads to the following expression for the free
energy [1, 9]:

a2
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Here y=n?/(kTd®) is the coupling constant of the dipolar interaction and V is the volume of
theliquid. The magnetization is easily seen to be[6]:

M(H):XL{1+47D(L+(47D(L)2}H 3)
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and consequently theinitial magnetic susceptibility is

4]u/L +(4]u/L)2:| (4)
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Eqg. 3 and Eq. 4 emphasize that the magneti c behaviour of the suspension deviates from the
ideal Langevin pattern.
2.2. Thermodynamic perturbations

The method developed by Y u. Buyevich and A. O. Ivanov in [2] it is a standard hard-sphere
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perturbation theory of the partition function [4, 6, 7].

Here H, =H, +H, with H,=Hg +H,,,s , i.e theperturbation is the dipolar interaction
H, and the reference liquid is made up of 'magnetic noninteracting hard spheres’ - this is a
Langevin gas of hard spheres. H,,,; is used actualy as a device which offers the possibility of

employing the standard results of non-spherical perturbations of a spherical hard core potential [4].
So, the fidd isincorporated into the angle averaging technique:

%Tf:”df [ d(cosa) - %T [["dz | e=d(cosa) )

where € and w are the azimuthal and the polar angles of the magnetic moment with respect to the
direction of H, for convenience the direction of the z axis. Thisincorporation of the field also makes
it easy to separate a Langevin contribution of ideal paramagnetic gas-type in the partition function,
and consequently in the magnetization and the initial magnetic susceptibility [2, 9]:

M (H) =ML(H){1+%”XL} ®)

4
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Here M (H) is the Langevin value of the magnetization, M (H) = x,H =nmL(a),

1
with L(a) =cotha —— the Langevin function. Eq. 6 and Eq. 7 also show deviaions of the
a

magnetic behaviour from the idea Langevin pattern. Notably, the latter expressions are the same
with that for O(1) deviation from the Langevin pattern in the d gebrai c result (Egs. 3 and 4).

2.3. Perturbations of the pair distribution function

The last method reviewed, ak.a 'the BBGKY method, is a standard hard-sphere
perturbation theory of the colloidal 2-particle correlation function, a technique stemming directly
from the theories of liquid state [4, 5]. The method was put forward by A.O. Ivanov and O.B.
Kuznetzova[3].

Heretoo H, =H,+H, and H,=H +H,,,; just as before, with H,,, . accounted for
by the same technique of angle averaging. The only difference is that the perturbed object is the
0,(r,,, 4, @,) 2-particle correlation function of the reference 'Langevin gas of hard spheres' above.
The magnetization M(H) is given by a straightforward expression involving the 1-particle
corrdation function, g,():

M(H) = ?I_llcoswgl(w)d(cosw) (8)

and use of a BBGKY-type hierarchy gives us the experimentally-inaccesible g, in terms of the

experimenta | y-accesibl e (e.g. through the structure factor) g, .
This latter function is determined by perturbation with O(1) in the dipolar interaction [3, 9]:

0,(f. a1, @) = gy +(a+b)(3cos’ 4, -1) +c+d )
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apart from terms that do not matter for the calculations of physical properties. Such an expression
offers the possibility of further studying the structural properties of the ferrocolloid, eg. the

structural anisotropy = the dependence of g, on the interparticle polar angle 6,, (see Section 4).
Thetermsin Eq. (9) are
g,(ry,) thehard sphere pair distribution function

a the dipolar perturbationa contribution
b, c,d termsthat account for the mean fidd contribution and also for the hard sphere structure
Using the BBGKY the differential equations makes it possible to write down O(2) results::

M(H) = ML(H){1+4—HM+1(4—HT ML(H)(dZML(H)j_i_ (4m)* (dML(H)j2 . K}(lO)

3 dH 2 3 dH? 144 dH

dropping out the terms (abbreviated by the constant K) that do not contribute to the initia
susceptibility, whichis:

2
1+ 900, (47x.) } (11)
3 144

-

2

~=1F x+ x> F X’ +... to write down expressions of di(a) and d L(f)
1+Xx da da
and have again separated the contribution of Langevin type, showing that the magnetic properties are
controlled by the interparticle correations attained by both types of interaction: steric and dipolar.
Eq. (11) is the same with the agebraic results (Eq. (4)), and that represents a mutual validation of
the two methods, but Eq. (11) is better than Eq. (3) becauseit is vaid no matter if thefiedislow or
high.

We used

3. Range of validity and order of approximation

Writing down a hard sphere perturbative series, Sections 2.2. and 2.3, is usualy restricted to
O(1) in the perturbation and in the density, because of computationd difficulties [2, 3, 9]. This
makes the BBGKY method of Section 2.3 very useful, as O(1) in the perturbative series of the 2-
particle corrdation function (also O(1) in the concentration) is converted into thermodynamical O(2)
results, i.e. magnetization, through the specific device of the method, which uses the BBGKY
hierarchy [3, 9]. We remark here that the first term of Eq. (10) is actually computed by means of the
O(1) termin the virial series for the hard sphere partial distribution function gy [7].

Choosing the dipolar hard spheres as the reference fluid, Section 2.1, enables one to use a
method that gives O(2) thermodynamical results in the perturbation and density, but is limited to low
fidds[1, 9].

3.1 Algebraic perturbations (O(2) perturbative series, O(2) thermodynamics, low
fields)

The choice of the reference system makes H,,,; be the perturbation, so that the method

works in low fidds (a meaningful expression of 'low' is @ <1). Even though initialy developed at
low concentrations of the dispersed phase n < 1%, careful analysis [1] by Szala et d. of the
integrals involved showed that the method is valid through al concentrations of practical interest
0 < nd® < 0.95. In [1] it is aso shown that the theory is in good agreement with experimental
findings for weakly to moderately coupled dipoles: y< 2.5.
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3.2 Thermodynamic perturbations (O(1) perturbative series, O(1) thermodynamics,
arbitrary fields)

The angle averaging device enables the use in an arbitrary field. Even though hard sphere
perturbations work primarily at high densities of the dispersed phase, this method functions best
when the volume fraction of the hard spheres is in the range 6% - 12% , mostly because of the
limitation i mposed on the perturbative series by considering only O(1) terms. This happens because
of difficulties rdaed to the caculation of the rdevant integrals. The method dso works at low

densities 0.1% < n < 6% where U, isweak and does not influence the fundamental structure of the

hard spheres or the corresponding physical properties [4]. Formaly, this method is a high
temperature approximation, ak.a. HTA [2, 11], but a better criterion for the convergence of the
series involved is that the effect of the perturbation on the structure of the colloid be small [4, 2].
This method works for )y <4+5.

3.3 Perturbations of the pair distribution function - The BBGK'Y method (O(1)
perturbative series, O(2) thermodynamics, arbitrary fields)

The angle averaging device enables use in an arbitrary field. Hard spheres perturbations
work as usua when the volume fraction of the hard spheres motivates peturbational techniques. The
method isin very good agreement with experimental findings up to high concentrations n ~ 18% of
the magnetic phase; ow concentrations being covered by this approxi mation on the same grounds as
above In fact, the same criterion of convergence of the perturbative series applies as before: the

effect of the perturbation on the structure of the suspension be small, rather than the HTA U, <<KT.
This method works for ) <4+5. The success of this method is justified by the following argument:
g, isintimately connected with the structure of the ferrocolloid and the structure of the colloid is
primarily influenced by the hard-spheres, and not by the fluctuations around hard spheres, so that
consideration of O(1) terms in the perturbative series for g, suffices (compare with the method

above which retains O(1) in the perturbation, and consequently in the density, in the expression of
the partition function, which is not a direct indication on the structure but rather on the full physical
behaviour). O(2) in the density is attained by the specific device of re-obtaining the thermodynamics
from the microscopic analysis through use of 1- and 2-particle correlation functions, connected by
the BBGKY hierarchy.

4. Further studies

All the theories pesented here gpply to polar fluids as wel. Care must be taken when
computing the didectric constant of the polar fluid by the method of Section 2.3: an additiona term
is needed in the perturbative series of g, [3]. The theory of Section 2.1 was actually devised for use
with polar fluids [1].

The method of thermodynamic perturbations retains in its very structure the opportunity of
equilibrium thermodynamic studies (e.g. the phase diagram, phase separation) by use of the
Carnahan-Starling model of the hard spheres reference liguid, and even that of (tentative)
consi derations on nonequilibrium properties (see [2] for further comments).

Determination of g, isitsalf important as this correlation function is a central object in the

study of colloidal suspensions. The two probabilities g,(8, =0)and g,(8,, = %), obtained by

integrating with respect to the angles &, @, and ¢,, are such that their ratio (which is the
anisotropy of g,) shows a dependence on the r;, distance, typical to the liquid state, specifically of
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the first virid coefficient in the perturbative expression of g,(12), see Eq. (10) and [7]. Thisis a

direct manifestation of the short range order induced by the fiedd on the magnetic hard spheres,
similar to that already showed by a simple liquid of hard spheres. This phenomenon can be observed
from the data plotted in Fig. 1 be ow, cal culated for H=100 kA/m and n=10% sample concentration,
and this packing of the 'magnetic hard spheres' is one aspect missed by the 'traditional’ gas-type or
mean field models. The smooth profile of the curvein Fig. 1 is due to the perturbation U, (which
also makes the two probabilities above be un-equal).
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Fig. 1. The dependence of the anisotropy on the spacing between particles (first virial
gpproximation).

This structural anisotropy is due to the externa fiedd H. The field enables arrangements of
the magnetic particles conformal with the prescriptions of U, (&, =0 is more probable than

6, = % when the magnetic moments are ordered paralld to the z axis, i.e. in the limit of infinite
fidd).

This effect is dependent on the interparticle distance ri2 (U, ~ % 3 ) and isimportant on a

12

scale of approx. 30 nm, as can be seen in Fig.2 below, which is a polar plot of g,(8,,,1,,) asa
function of 8,,, for values of 12, 15, and 30 nm of the r, interpartide distance, calculated for
H=100kA/m. The effect increases with the value H of the external imposed magnetic fied H, as
shown by the polar plot of g,(H,8,,) asafunction of &,,, for vaues of 0, 60 and 120 kA/m of the
magnitude H of the external imposed field H and r,, =10 nm of the interparticle distance. Both plots
are drawn for n=10% sample concentration (we have again integrated on thew angles and on the
azimuthal r, angle, @,):
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Fig. 2. Polar plot of the interparticle correlation function g,(12) , showing the anisotropy,
the H and the I, dependence as accounted by Eq. 9.

Experimenta studies showing (&) the behavior accounted for in this paper, typicd of the
liquid state and (b) the anisotropy in the function g, and hence in the structure, dueto the field, are

consequently possible, e.g. neutron scettering or optica studies of magnetically induced dichroism.
Seealso[2, 3, 10, 11] and afurther paper of VS.

5. Conclusions

This paper has evidenced the benefits of taking into account the structure of ferrocolloids
when attempting studies of macroscopic behaviour, such as magnetization and magnetic
susceptibility. The teories presented [1, 2, 3], al of which are various types of wel-known fluid-
state perturbational methods [4, 5, 6, 7] are valid in a wider region of the parameter space
(concentration of magnetic phase vs. vaue of imposed magnetic fied) than gas-type or mean-fidd
models, also effecting an a posteriori justification of such crude approximations. Compared to the
integrd -equations methods, such as the spherical-modd based theories, the perturbational methods
offer a better, more realistic, picture of the microscopic interaction and structure. We note here that
the mean-spherical modd offers good description of experimental studies (see [11]). See our
Section 3.

The BBGKY method (perturbations of the 2-particle correlation function), Section 2.3, is
particulary well-suited for further developments [3]. The expression of the 2-partid e intercorrdation
function, apart from giving information on the structure of the colloidal suspension, is a basic input
in the opticd investi gations such as magnetically induced dichroism.
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