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The theories that account for the colloidal structure of a magnetic fluid give far better results 
than the gas-type or mean-field models. We show this by using standard perturbative 
approaches of colloidal science and expressing the magnetization M(H) and the initial 

magnetic susceptibili ty χ  as Taylor series about the Langevin values ML(H) and Lχ . One 

of the methods surveyed enables the structural study of the ferrocolloid through the analysis 
of the pair distribution function. We give a polar plot of this object when an external 
magnetic field H is present, showing the effect it has on the otherwise isotropic suspension. 
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1. Introduction 
 

 The magnetic fluids (ferrocolloids) are suspensions of solid magnetic particles dispersed in a 
liquid carrier. The perturbative methods [4] of the statistical study of liquids are well suited to 
colloids as well [5]. The use of these methods improves [10, 11] the results of the 'traditional' 
approach to a ferrocolloid as being a Langevin gas of magnetic particles, i.e. an ideal paramagnetic 
gas: The 'traditional' approach neglects the interactions between particles, either steric (the particles 
are coated with a layer of a surfactant solution to keep them apart) or magnetic (there is a dipole 
moment associated with each magnetic particle), while the theories here presented do take these 
interactions into consideration, them being the very building blocks of structure and of physical 
manifestations. Of these latter, magnetization and initial magnetic susceptibility are investigated, 
experimental data sustaining our conclusions being quite consistent [1, 2, 3, 10, 11]. 
 The final result of all approaches is the effect a 'Langevin + deviations' splitting in the 
physical properties investigated, showing how the hard-sphere colloidal structure adjusted by the 
dipolar interaction contributes to the 'traditional' gas-type manifestations of the magnetic liquid. The 
aim of this paper is to review the perturbative means of dealing with such ‘un-traditional’  behavior. 
A complete but lengthy, unpublished version of this work is avaible [9]. 

 
 
2. Theoretical basis 
 

 The theories presented differ in the way that the energy of interparticle interaction is broken 
into a 'reference' part and a 'perturbation'. The case at hand is that of monodisperse suspensions of 
spherical particles, generalizations being possible but generally cumbersome. The total energy of the 
N dipolar hard spheres which model the surfactant-coated magnetic particles suspended in the carrier 
liquid, is, when placed in an external magnetic field H: 
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with ( )SU ij  the hard sphere repulsion of radius d between particles i and j, the expression in 

the square brackets, hereafter denoted by ( )DU ij , is the interaction energy between dipoles 

associated with spheres i and j,  and then ( )MAGU i  - the energy of the dipole i in the external field 

H. Here im  is the magnetic moment of the i-th particle and ijr  is the position vector of the center of 

the sphere j with respect to that of sphere i. The potentials are manifestly pairwise and independent 
of the concentration n. 

 
2.1 The algebraic perturbation method  
 
This is a rigorous method of perturbing the liquid of dipolar hard spheres, by switching on a 

weak external  field; it was first described by V.I. Kalikmanov in 1992 and subsequently developed 
[1]. The perturbational technique used by Kalikmanov is a rigorous procedure devised by Ruelle in 
[8].  

Here 0N MAGH H H= +  making it clear that the perturbed system is the magnetic fluid put 

in the external field, while the reference liquid is the magnetic fluid 'as is': 0 S DH H H= + . By use 

of the Mayer functions corresponding to the dipole-field interactions MAGH , the ratio of the partition 

function of the perturbed system to the partition function of the reference system can be put in the 
exponential form through use of Ruelle's theorem. This exponential series converges rapidly after its 
second term if the Langevin parameter mH / kT = α <1, which is precisely the expression of the 
condition that the field be small [1]. The j-th coefficient of the series is given by algebraic (rational) 
combinations of the j-particle correlation functions of the dipolar hard spheres, [1, 8]. We must note 
that we only need the 2-particle correlation functions but the actual calculations use the 
perturbational expression of it [4]. Tedious work leads to the following expression for the free 
energy [1, 9]: 
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Here γ =m2/(kTd3) is the coupling constant of the dipolar interaction and V is the volume of 

the liquid. The magnetization is easily seen to be [6]: 
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and consequently the initial magnetic susceptibil ity is 
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Eq. 3  and Eq. 4  emphasize that the magnetic behaviour of the suspension deviates from the 

ideal Langevin pattern. 
 
2.2. Thermodynamic perturbations 
 
The method developed by Yu. Buyevich and A. O. Ivanov in [2] it is a standard hard-sphere 
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perturbation theory of the partition function [4, 6, 7].  
Here 0N DH H H= +  with 0 S MAGH H H= + , i.e. the perturbation is the dipolar interaction 

DH  and the reference liquid is made up of 'magnetic noninteracting hard spheres' - this is a 

Langevin gas of hard spheres. MAGH  is used actually as a device which offers the possibility of 

employing the standard results of non-spherical perturbations of a spherical hard core potential [4]. 
So, the field is incorporated into the angle averaging technique:  
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                        (5) 

 
where ξ and ω are the azimuthal and the polar angles of the magnetic moment with respect to the 
direction of H, for convenience the direction of the z axis. This incorporation of the field also makes 
it easy to separate a Langevin contribution of ideal paramagnetic gas-type in the partition function, 
and consequently in the magnetization and the initial magnetic susceptibil ity [2, 9]: 
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Here ( )LM H  is the Langevin value of the magnetization, ( ) ( )L LM H H nmLχ α= = , 

with 
1

( ) cothL α α
α

= −  the Langevin function. Eq. 6 and Eq. 7 also show deviations of the 

magnetic behaviour from the ideal Langevin pattern. Notably, the latter expressions are the same 
with that for O(1) deviation from the Langevin pattern in the algebraic result (Eqs. 3 and 4). 

 
2.3. Perturbations of the pair distribution function 
 
The last method reviewed, a.k.a. 'the BBGKY method', is a standard hard-sphere 

perturbation theory of the colloidal 2-particle correlation function, a technique stemming directly 
from the theories of liquid state [4, 5]. The method was put forward by A.O. Ivanov and O.B. 
Kuznetzova [3].  

Here too 0N DH H H= +  and 0 S MAGH H H= +  just as before, with MAGH  accounted for 

by the same technique of angle averaging. The only difference is that the perturbed object is the 

2 12 1 2( , , )g ω ωr  2-particle correlation function of the reference 'Langevin gas of hard spheres' above. 

The magnetization M(H) is given by a straightforward expression involving the 1-particle 
correlation function, 1 1( )g ω : 
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and use of a BBGKY-type hierarchy gives us the experimentally-inaccesible 1g  in terms of the 

experimentally-accesible (e.g. through the structure factor) 2g .  

This latter function is determined by perturbation with O(1) in the dipolar interaction [3, 9]: 
 

2
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apart from terms that do not matter for the calculations of physical properties. Such an expression 
offers the possibility of further studying the structural properties of the ferrocolloid, e.g. the 
structural anisotropy = the dependence of 2g  on the interparticle polar angle 12θ  (see Section 4). 

The terms in Eq. (9) are: 

12( )dg r  the hard sphere pair distribution function 

a  the dipolar perturbational contribution                                                        
b, c, d    terms that account for the mean field contribution and also for the hard sphere structure  

Using the BBGKY the differential equations makes it possible to write down O(2) results:: 
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dropping out the terms (abbreviated by the constant K) that do not contribute to the initial 
susceptibility, which is: 
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and have again separated the contribution of Langevin type, showing that the magnetic properties are 
controlled by the interparticle correlations attained by both types of interaction: steric and dipolar. 
Eq. (11) is the same with the algebraic results (Eq. (4)), and that represents a mutual validation of 
the two methods, but Eq. (11) is better than Eq. (3) because it is valid no matter if the field is low or 
high.  

 
 
3. Range of validity and order of approximation 
 
Writing down a hard sphere perturbative series, Sections 2.2. and 2.3, is usually restricted to 

O(1) in the perturbation and in the density, because of computational  difficulties [2, 3, 9]. This 
makes the BBGKY method of Section 2.3 very useful, as O(1) in the perturbative series of the 2-
particle correlation function (also O(1) in the concentration) is converted into thermodynamical O(2) 
results, i.e. magnetization, through the specific device of the method, which uses the BBGKY 
hierarchy [3, 9]. We remark here that the first term of Eq. (10) is actually computed by means of the 
O(1) term in the virial series for the hard sphere partial distribution function gd [7]. 

Choosing the dipolar hard spheres as the reference fluid, Section 2.1, enables one to use a 
method that gives O(2) thermodynamical results in the perturbation and density, but is limited to low 
fields [1, 9]. 

 
 
3.1 Algebraic perturbations (O(2) perturbative series, O(2) thermodynamics, low  
      fields) 
 

The choice of the reference system makes MAGH  be the perturbation, so that the method 

works in low fields (a meaningful expression of 'low' is α <1). Even though initially developed at 
low concentrations of the dispersed phase, n < 1%, careful analysis [1] by Szalai et al. of the 
integrals involved showed that the method is valid through all concentrations of practical interest        
0 < nd3 < 0.95. In [1] it is also shown that the theory is in good agreement with experimental 
findings for weakly to moderately coupled dipoles: γ < 2.5. 
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3.2 Thermodynamic perturbations (O(1) perturbative series, O(1) thermodynamics,  
       arbitrary fields) 
 
The angle averaging device enables the use in an arbitrary field. Even though hard sphere 

perturbations work primarily at high densities of the dispersed phase, this method functions best 
when the volume fraction of the hard spheres is in the range 6% - 12% , mostly because of the 
limitation imposed on the perturbative series by considering only O(1) terms. This happens because 
of difficulties related to the calculation of the relevant integrals. The method also works at low 
densities  0.1% < n < 6% where DU  is weak and does not influence the fundamental structure of the 

hard spheres or the corresponding physical properties [4]. Formally, this method is a high 
temperature approximation, a.k.a. HTA [2, 11], but a better criterion for the convergence of the 
series involved is that the effect of the perturbation on the structure of the colloid be small [4, 2]. 
This method works for γ <4÷5. 

 
3.3 Perturbations of the pair distribution function - The BBGKY method (O(1)  
      perturbative series, O(2) thermodynamics, arbitrary fields) 
 
The angle averaging device enables use in an arbitrary field. Hard spheres perturbations 

work as usual when the volume fraction of the hard spheres motivates peturbational techniques. The 
method is in very good agreement with experimental findings up to high concentrations n ~ 18% of 
the magnetic phase; low concentrations being covered by this approximation on the same grounds as 
above. In fact, the same criterion of convergence of the perturbative series applies as before: the 
effect of the perturbation on the structure of the suspension be small, rather than the HTA DU << kT. 

This method works for γ <4÷5. The success of this method is justified by the following argument: 

2g  is intimately connected with the structure of the ferrocolloid and the structure of the colloid is 

primarily influenced by the hard-spheres, and not by the fluctuations around hard spheres, so that 
consideration of O(1) terms in the perturbative series for 2g  suffices (compare with the method 

above which retains O(1) in the perturbation, and consequently in the density, in the expression of 
the partition function, which is not a direct indication on the structure but rather on the full physical 
behaviour). O(2) in the density is attained by the specific device of re-obtaining the thermodynamics 
from the microscopic analysis through use of 1- and 2-particle correlation functions, connected by 
the BBGKY hierarchy. 

  
 
4. Further studies  
 
All the theories pesented here apply to polar fluids as well. Care must be taken when 

computing the dielectric constant of the polar fluid by the method of Section 2.3: an additional term 

is needed in the perturbative series of 2g  [3]. The theory of Section 2.1 was actuall y devised for use 

with polar fluids [1]. 
The method of thermodynamic perturbations retains in its very structure the opportunity of 

equil ibrium thermodynamic studies (e.g. the phase diagram, phase separation) by use of the 
Carnahan-Starling model of the hard spheres reference liquid, and even that of (tentative) 
considerations on nonequilibrium properties (see [2] for further comments). 

Determination of 2g  is itself important as this correlation function is a central object in the 

study of colloidal suspensions. The two probabilities 2 12( 0)g θ = and 2 12( )2g πθ = , obtained by 

integrating with respect to the angles 1ω , 2ω  and 12φ , are such that their ratio (which is the 

anisotropy of 2g ) shows a dependence on the r12 distance, typical to the liquid state, specifically of 
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the first virial coefficient in the perturbative expression of (12)dg , see Eq. (10) and [7]. This is a 

direct manifestation of the short range order induced by the field on the magnetic hard spheres, 
similar to that already showed by a simple liquid of hard spheres. This phenomenon can be observed 
from the data plotted in Fig. 1 below, calculated for H=100 kA/m and n=10% sample concentration, 
and this packing of the 'magnetic hard spheres' is one aspect missed by the 'traditional' gas-type or 

mean field models. The smooth profile of the curve in Fig. 1 is due to the perturbation DU (which 

also makes the two probabilities above be un-equal).  
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Fig. 1. The dependence of the anisotropy on the spacing between particles (first virial 

approximation). 
 
 
This structural anisotropy is due to the external field H. The field enables arrangements of 

the magnetic particles conformal with the prescriptions of DU  ( 12 0θ =  is more probable than 

12 2
πθ =  when the magnetic moments are ordered parallel to the z axis, i.e. in the limit of infinite 

field).  
 

This effect is dependent on the interparticle distance r12 ( 3
12

1~DU
r

) and is important on a 

scale of approx. 30 nm, as can be seen in  Fig.2 below, which is a polar plot of 2 12 12( , )g rθ  as a 

function of 12θ , for values of 12, 15, and 30 nm of the 12r  interparticle distance, calculated for 

H=100kA/m. The effect increases with the value H of the external imposed magnetic field H, as 
shown by the polar plot of 2 12( , )g H θ  as a function of 12θ , for values of 0, 60 and 120 kA/m of the 

magnitude H of the external imposed field H and 12r =10 nm of the interparticle distance. Both plots 

are drawn for n=10% sample concentration (we have again integrated on theω  angles and on the 
azimuthal 12r  angle, 12φ ): 
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Fig. 2. Polar plot of the interparticle correlation function 2(12)g , showing the anisotropy, 

the H and the 12r dependence as accounted by Eq. 9. 

 
Experimental studies showing (a) the behavior accounted for in this paper, typical of the 

liquid state and (b) the anisotropy in the function 2g  and hence in the structure, due to the field, are 

consequently possible, e.g. neutron scattering or optical studies of magnetically induced dichroism. 
See also [2, 3, 10, 11] and a further paper of VS. 

 
 
5. Conclusions 
 
This paper has evidenced the benefits of taking into account the structure of ferrocolloids 

when attempting studies of macroscopic behaviour, such as magnetization and magnetic 
susceptibility. The teories presented [1, 2, 3], all of which are various types of well-known fluid-
state perturbational methods [4, 5, 6, 7] are valid in a wider region of the parameter space 
(concentration of magnetic phase vs. value of imposed magnetic field) than gas-type or mean-field 
models, also effecting an a posteriori justification of such crude approximations. Compared to the 
integral-equations methods, such as the spherical-model based theories, the perturbational methods 
offer a better, more realistic, picture of the microscopic interaction and structure. We note here that 
the mean-spherical model offers good description of experimental studies (see [11]). See our                 
Section 3.  

The BBGKY method (perturbations of the 2-particle correlation function), Section 2.3, is 
particulary well-suited for further developments [3]. The expression of the 2-particle intercorrelation 
function, apart from giving information on the structure of the colloidal suspension, is a basic input 
in the optical investigations such as magnetically induced dichroism.  
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