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Numerical smulation of ohnmic heating in idealized
thin-layer electrodeposition cells

P. BARVINSCHI
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The ohmic (Joule) heating in an electrolysis cell during electrochemical deposition (ECD) with a binary electrolyte could be
significant since the conductivity of the solution without supporting electrolyte is low. Here we report some results
concerning the simulation of the thermal field due to ohmic heating in idealized 2D and 3D thin-layer ECD cells. The
mathematical model is based on a Laplace-type equation for the electrical potential and a time-dependent equation for the
heat conduction. The coupled equations system is solved using a finite element method. The numerical results are
compared with experimental ones and a qualitative agreement is found.
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1. Introduction

In el ectrochemical systems heat may be generated due
to mass-transport phenomena and chemical reactions [1].
The combined set of gradients and of heat- and mass-
transfer rates are coupled and they could modify the local
properties within a given phase of the system and, as a
consequence, they are influencing the course of some
phenomena or the results of some properties
measurements and their interpretation.

In aregion of complex chemical compasition like a
thin-layer electrodeposition cell the mentioned effects may
be even more important because in such a small volume
the electric potential, density or temperature gradients,
respectively, could have very large values. It is known also
that in thin-layer ECD cdls branched aggregates of
quditatively distinct morphologies are observed as the
deposition parameters are varied [2]; is aso important to
establish the role of thermd effects in the morphology
selection.

We have found only two references devoted to some
features of thermal effects in thin-layer ECD. In the first
one [3] there is a mention on the concentration
measurement error due to temperature variation in an
interferometric studies of branched e ectrodeposition. The
other paper [4] is entirdly devoted to an experimenta
study of the ohmic heating influence on the flow field in
thin-layer ECD. In [4] a thin-layer ECD cell was filled
with an ZnSO, agueous solution and the e ectrodeposition
was performed a a constant electrical potentia. The
deposit a the cathode was belonging to the homogenous
or dense branched morphology (DBM). The temperature
field due to Joule heating in the dectrolyte solution was
measured by means of an infrared camera. As mentioned
in [4], the direct comparability of the results reported in
this work with experiments performed in standard ECD
cellsisnot possible because the ECD cell was of adightly
modified type. However, some of the results reported in
[4] are approprigte to our purpose. These results are
presented in figures 2 - 4 of the mentioned reference,
giving an example of a two-dimensional thermography in

the neighborhood of the anodic zinc wire, and the tempora
evolution of the temperature field at the cathode and the
anode as a function of the distance to the dectrodes,
respectively. The properties of the temperature field
correspond closely with those of the concentration fidd in
the cdl (see bellow) and this observation motivate our
approach.

A detailed description of the dense morphology in
parallel geometry electrodeposition can be found in Ref.
[5]. In this type of growth the electrodeposit consist in an
array of quasi-regularly spaced porous trees (branches or
filaments), as is shown in Fig. 1. This dense branched
agoregate is bounded by a flat linear front which invades
the cell at constant velocity and remains parale to the
electrodes. In the absence of convection and due to the fast
electrodeposition of the cations near and between the tips,
one can assume that the zone comprised between the
cathode and the tips of the trees is totally depleted of
cations. Correspondingly, the anions must be expdled
from the tip region while the tip advance, otherwise they
would create a large space charge region. The anions must
leave this region at the same velocity as the front progress
inthe cell. The growth can thus be regarded as the advance
of the front of an array of branches a a speed equal to the
drift velocity of the anions; the growth front push away a
depletion layer of both anions and cations (concentration
boundary layer or diffusion layer) whose size remains
constant. As the total amount of anions must remain
constant the anions must accumulate near the anode,
where their charge is baanced by anodic generation of an
equal amount of cations, resulting a boundary layer of high
concentration and low resistivity. Between the two
boundary layers (cathodic and anodic) there is a neutrd
region whose concentration is equd toitsinitial value. The
filaments are supposed to be highly conducting, therefore
they keep the region between the cathode and the tips
equi potential; the aggregate behave as a moving cathode.

The cathodic eectrodeposition that belongs to the
dense paralld morphology can be more or less regular. For
high enough potential vaues, a regularly columnar or
channd like deposit isformed [2,3].
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Fig. 1. Illustration of dense growth by ECD inthin cell.
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Fig. 2. Schematic diagram of the problem space and
the boundary conditions for the eectrical and thermal
problems.

A macroscopic (>0.1 mm) characterization of a dense
branched aggregate was proposed in [5]. The andysis
relies on the computation of a correlation function which
provides a statistical estimate of the mean distance A
between branches and of the width w of the branches. If
one defines the occupancy ratio 6 as the proportion of the
cel width occupied by the deposit then, in a first
approximation, we can write w =0A and the deposit can

be imagined as a rectilinear equally spaced set of filaments
(see Fig. 2). Obvioudly, this gpproximation is very good
for channd like deposits.

In this paper we present a modd for the simulation of
the thermal field in idealized 2D and 3D thin-layer ECD
cells by solving the problem of simultaneous dectric and
time-dependent thermal conduction in two or three
dimensions. The mathematical model is the same as in [6]
but in the present work we extend the calculations to
ramified deposits, making arigoroudy parametric study of

the temperature distribution in the ECD cels. The
numerical results are compared with experimentd
measurements reported in [4] and we point out on some
new results that could be useful in forthcoming studies
devoted to thistopics.

2. Theoretical and numerical model

In the following we present a numerical study of the
temperature distribution in ideglized 2D and 3D ECD célls
solving the problem of combined dectric and hea
conduction. In our approach we consider only the
contribution of the dissipated ohmic heat and neglect any
other form of energy dissipation. In accordance with the
description of the ECD process in section 1, we consider
the active part of the eectrochemical cell as a thin
rectangular foil composed of two parallel eectrodes made
of the same metal (Zn), a dilute solution of a sdt of this
metal (in our case ZnSO,), the eectrodeposit and two
diffusion layers, one in front of the deposit and the other
near the anode. The el ectrodeposit is supposed to be of the
same metal as the electrodes. In the idealized 2D cells the
thickness of the foil lying in the (x,y) plane is supposed to
be infinitesmally small. The more redlistic 3D cdl is
composed of a finite thickness layer of the same
electrolyte solution, two diffusion layers and a deposit
sandwiched al of them between two paralle glass plates.
The geometry of the thin layer in the (x,y) plane between
the glass plates is the same as in the 2D case. The
thickness of the 3D cell is measured in the z direction.
Because the two electrodes are very thin and can conduct
heat much better than the fluid and the glass, we assume
that they have a negligible thermal resistance in both the y-
direction and z-direction. As a result, the electrodes can be
assumed to be transparent for the flux of heat and are
removed from the modd for the calculation of the
temperature field.

Each numerical experiment is performed considering
a fixed shape eectrodeposit (no deposit growth). We
consider the bulk solution and the two diffusion layers to
be each of them homogeneous and &t rest. It is assumed
that eectroneutrality is maintained in al the cel, and the
diffusive and convective effects are absent. We focus on
the study of the temperature distribution in such idealized
2D or 3D cdls a a constant voltage applied between the
two dectrodes (potentiostatic conditions). Clearly, the
model described so far is a first step toward a more
redistic description of the ohmic heating in thin-layer
electrodeposition, in which electroneutrality assumption is
removed and full ion transport is taken into account. The
andysis of the full problem will be carried out in a
forthcoming paper.

Based on previous considerations we can calculate the
temperature distribution in the electrochemica cell as
follows. Supposing electro-neutrality holds and in the
absence of diffusive and convective transport of charge
carriers, each region of the solution in the cell behaves like
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an ordinary metal and the electrica current density ]
flowing into the cell is related tothe field strength E by

j = oE = -o0® )

where O is the dectric conductivity and @ is dectric
potential. Under the same conditions, the conservation of
electrica charge requires that

00=0 )
Combining the relations (1) and (2) we obtain
00 =04-oE)=00-0c0®)=0 (3

Thisis a PDE of the Laplace type where the conductivity
0 may vary in space. The current density causes

dissipation of heat & arate ]I:IE per unit volume. This

electric power will appear as asourceterm h in the time-
dependent equation for heat conduction

DEﬁ+pcp%—I:h (4)

where T is the absolute temperature, f = —KOT the heat
flux density, k the thermal conductivity, P the mass
density and ¢, the specific heat capacity. In order to
calculate the temperature distribution in the ECD cell we
must solve simultaneously equation (3) for the electrical
potential and equation (4) for temperature with appropriate
initial and boundary conditions.

Each region of the 2D or 3D cdl is characterized by
its own electrical and therma conductivity, mass density
and specific heat capacity. Some data are taken from [7]
and [8] and dl of them are summarized in Table 1. For the
purpose of the present study these properties are assumed
temperature invariant.

Table 1. Physical and chemical property data.

k c PG

wm'kK?| o'm? Jm3K?
Deposit (Zn) 121 [15x107| 2.78x 10°
Cathodic diffusion layer 0.6 0005 | 4.0x10°
(0.001 M/I)
Neutral solution (0.1 M/l) | 0.4 0456 | 45x10°
Anodic diffusion layer 0.6 10 4.6 % 10°
(0.25 M/1)
Glass plates 0.78 10™ | 2.268x 10°

The initia conditions are always T = 300K for the
temperature and @ = O for the electrica potential. The
boundary conditions are of Dirichlet and Neumann type
and they must be specified only on the boundary

separating the system and its surroundings: @ = —®, and

0T/on=0 on the cahode side, ® =+®P, and
0T/0n =0 on the anode side and 0®/on =0 and
T =T, onthelaterd boundaries of the cell, where @, is

half the voltage applied to the ECD cell and i is the
outward normal at the boundary of the domain. For the 3D
cell additional boundary conditions were specified on the
externa faces of the glass plates: for the lateral ones the
conditions are the same as for the corresponding sides of
the 2D cdl, and for the bottom and up faces we put
0P/0n=0 and dT/0Nn=0. In our problem no
boundary conditions are needed for ® and T at the
interfaces between two different regions because the
program treat as continuous the electrical potentia and the
temperature across the interfaces.

In the case of Joule heating, there are a variety of
possible eectrode boundary conditions for the therma
problem. An inspection of the experimental temperature
profiles shown in Figs. 3 and 4 of Ref. [4] may suggests
that the thermal boundary conditions are changing in time.
For example, we think that on the cathode side there is a
first period when the boundary conditions must be of the
Neumann type but with a non-vanishing velue of the
outward surface-norma flux 0T /on, followed by a
regime when the boundary conditions are of the Dirichlet
type (T is some constant temperature). For the sake of
simplicity, in our caculations we have adopted the
mentioned boundary conditions but a study of other
choices for thistype of problem could be interesting.

For the numerical solution of the equations we have
used the student version of the finite element PDE solver
FlexPDE [10]. A 2D problem space is divided into
triangular elements and the vari&bles are approximated by
second or third order polynomials; in a 3D problem the
space is divided into tetrahedrons. The program employs
an adaptive mesh refinement technique to improve the
accuracy of the solution.

3. Results and discussion
3.1 Thermal field in idealized 2D cdlls

As afirst approach to the analysis of the thermal field
in simplified thin-layer ECD cells we take a 2D ramified
deposit with ten equidistant spikes having a compact
rectangular shape. The problem space is shown in Fig. 2.
The length and width of the cell are the same in al
numerical experiments, L, = 40 mm and 2L, = 20 mm
respectively. The distance between the axis of two
successive spikes is A = 2 mm. Based on experimentd
findings concerning the homogeneous e ectrodeposition
from ZnSO, agueous solution, in our mode we suppose
that between spikes there is pure water. A number of
parameters in the problem can be varied: the applied
electric potential @, the width &; and d, of the cathodic
and anodic diffusion layers respectively, the physicad
properties of the regions in the cdl (0, k, P, ¢), the
length | and the width w of the spikes in the deposit. We
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are able than to make a parametric study of the ohmic
heating phenomenon in our smplified ECD cdls. We
performed calculations for various values of @&, , &, | and
w; because the width of the cdl has a constant value,
changing w means a varigion of the occupancy ratio 6.
For 6 = 1 the spikes touch each other and the deposit
becomes a compact one.
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Fig. 3. Equipotential lines for the solved electrical
potential near the deposit; the values of the contours are
given on theright in volts (see text for details).
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Fig. 4. Isothermal lines for the calculated thermal field in
the entire ECD cdl arising from Joule heating; the
values on theright arein Kelvin (seetext for details).

We have calculated the two-dimensional eectrica
potentia &(xy) and the electric field E(x,y) inthecell. A

typical result for @(xy) obtained for the vaues of
parameters | =2 mm, & = 10 V, & = & = 0.8 mm,
0 = 0.73 a the moment t = 400 s is shown in Fig. 3. We
see that the equipotentia lines are deformed in the usua
manner due to the presence of spikes. The eectric field
(not shown here) is concentrated on the tips of spikes and

amost vanish in the rest of the cel, having very smdl
values between the spikes.

The calculated temperature distribution in the entire
cell T(x,y) for the same values of parametersasin Fig.3is
shown by contours lines in Fig. 4. A painted image of this
temperature  distribution resemble quite well the
thermography in Fig. 2 of reference [4]. The tempord
evalution of the temperature distribution aong the y
direction in the cell, for the same values of parameters, is
shown in Fig. 5. The genera behavior of the simulated
temperature distribution is qualitatively similar to that
found experimentally and reported in Ref. [4] (see Figs. 3
and 4 of this reference), but the temperature increase is not
the same. The most important festures of the temperature
profile is the existence of a loca temperature maximum
whose position correspond to that of the cathodic diffusion
layer, followed by a plateau of spatialy quasi-constant
temperature extended in a region between the two
diffusion layers.
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Fig. 5. Calculated temperature profiles along the 2D cell
(seetext for the values of parameters).
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Fig. 6. The dependence of the calculated temperature
along the 2D cdl onthe voltage applied to the cell (see
text for the values of the other parameters).

We make a step further in our andysis focusing on the
dependence of the temperature profile along the cell, T(y),
on some parametersinvolved in the model. First of al, one
would expect an increase of the temperature in the entire
cell as a result of an incresse of the applied eectric
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potential @,. Our calculation show that this assertion is
true, as one can see in Fig. 6 where we have represented
the T(y) distribution for three values of @&, (10V, 15V,
and 20 V) at t = 400 sand keeping dl the other parameters
a the same values (I =2 mm, & = & =0.8 mm, 6 = 0.73).
It is aso remarkable that for various values of @&, the
shape of the T(y) distribution isthe same.

Turning out to the dependence of the temperature
profile T(y) on the occupancy ratio 6, the result of the
caculationfor [ =2mm, & =10V, & =6,=08 mm a
t = 400 s and three values of 6 (0.23, 0.60 and 1.00) are
shown in Fig. 7a. Trying to explan this behavior of the
temperature we have performed a caculation of the
electrica potential @y) aong the cell for the same values
of the parameters and the results are shown in Fig. 7b.
There is aremarkable resemblance between the profilesin
this figure and the profiles for the eectric potentia
obtained by Chazalvid (see Figs. 2 and 3 in Ref. [9]). We
observe that the most important part of the potentia drop
in the cdl is confined in the very narrow region in front of
the deposit (the cathodic diffusion layer). As is seen in
Fig. 7b, a dightly dependence of @(y) with the occupancy
ratio is observable for higher values of 0 and a more
important one for small vaues of 6. In our pure ohmic
model this behavior of @y) can be explained by the
increase of the potentia drop aong the deposit as a result
of an increasing of the electrical resistance when 6
decrease. A motivation for the dependence of the
temperature distribution T(y) on the occupancy ratio can
now be offered. It is clearly seen that in the deposit region
the temperature is higher for small values of 6 and that in
front of the cathodic diffusion layer the situation is
reversed (the temperature increase for high occupancy
ratio). These observations are in accord with the electrical
potential dependence on 0 discussed previousy: the
potential drop aong the deposit is more important for
small vaues of 6, and the temperature in this region will
increase when 6 decrease because the e ectrical power has
the same behavior as the potentia. In the same time, the
potential drop in the bulk solution isincreasing for higher
values of B, so the temperature in this region increases
when the occupancy ratio increases too.
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Fig. 7. Dependence of the calculated temperature profile
T(y) on the occupancy ratio &(a), and the corresponding
electrical potential profiles along the cel (b).
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Fig. 8. Dependence of the calculated temperature profile
T(y) on the cathodic diffusion layer width & (@), and the
corresponding eectrical potential profiles along thecell (b).

Another clear effect on the temperaure profile T(y) is
due to the variation of the cathodic diffusion layer width
O The calculated T(y) profilesfor | =2 mm, & =10V,
0,=0.8mm, 8 =0.73 a t =400 s, for three vaues of &
(0.4 mm, 0.8 mm and 1.2 mm), are shown in Fig. 8a. The
corresponding electrica potentia profiles (Fig. 8b) give
once again the motivation for the behavior of the
temperature distribution in the cel: an increase of the
potential drop in the bulk solution follows the reduction of
the diffusion layer width and this implies an increase of
the temperature in the bulk solution region.
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Fig. 9. Dependence of the calculated temperature profile
T(y) on g, k and g, in the deposit; the indicated
values have the same unitsasin Table 1.

As it is known, the density of metal in the
electrodeposit region is very low (see section 1) and the
previous assumption of homogeneous and compact pure
metd lic deposit isa very crude approximation. Despite the
fact that the deposit is considered to have a very good
electricdl  and therma conductivity, we think that the
appropriate average values for 0, k, P and ¢, for akind of
homogeneous and compact deposit are closer to those of
an agueous solution rather than those of a metal. For this
reason we have performed a number of simulations taking
for 0, kand P, in the deposit region some fictitious
values ranging between the corresponding ones for water
and metdlic zinc, the other parameters being the same:
l=2mm, & =10V, & =08,=08mm, 6 = 1.00. The
resulting T(y) profiles a t = 400 s are shown in Fig. 9. We
see that the values of temperature in the deposit region are
increasing if the values of O and k become more and more
closer to that of water. In the same time, the T(y) profilein
therest of the cdll isroughly unchanged.

From the results presented so far it is clearly seen that
he temperature profile a ong the cell, T(y), has roughly the
same shape whatever the 8 may be, in other words for al
morphologies belonging to he homogeneous growth.
However, important differences between the shapes of the
temperature profiles in the x direction (parale to the
growth front) are seen when we change the occupancy
ratio and implicitly the morphology of the deposit. Such
temperature distributions are shown in Figs. 10a — d for
l=2mm @& = 10V, & = & = 0.8 mm and three
occupancy ratio (6 = 0.23, 0.60 and 1.00) at t =400 s. The
T(X) profiles are calculated at the distances y = | - &,
y=lLy=I1+&andy= 1|+ 25 fromthe cathode. These
profiles suggest that important gradients of temperature
may exist between the spikes and in the tip region. The
possible influence of such temperature gradients on the
cathodic convective rolls is atopic that will be carried out
in a forthcoming paper. T(x) profiles caculated for
different values of the cathodic diffusion layer width &,
not shown here, conduct to similar results. when &
increase, T(X) decrease in the deposit area but increase in
front of the deposit; as compared to the occupancy ratio
influence, thistime the temperature gradients are smaller.
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Fig. 10. Calculated temperature profiles in the direction
parallel to the growth front at thedistancesy = | - & (a),
y=1(),y=1+ & (c)andy=1+ 24 (d) from the
cathode, for the occupancy ratio 8= 0.23 (1), 6= 0.60
(2), and 6= 1.00 (3). (Seetext for the other parameters).
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3.2Thermal field in simplified 3D cells

We next consider the case of a more redlistic ECD
cell, composed of athin layer of the same eectrolyte, a
metallic deposit (Zn) and two diffusion layers (cathodic
and anodic) confined between two pardld dlass plates.
Due to the limited number of nodes in the student version
of the FlexPDE program, the geometry of the thin layer
between the glass plates in the (x,y) planeis very smple:
the deposit is supposed to be a homogeneous and compact
rectangle (occupancy ratio 6 = 1), having the length | and
the width 2L,. Because the study in the present work is a
quditative one and taking into account the results obtai ned
in the previous section, the case 8 = 1 is appropriate for
our purposes. We have performed the same numerical
experiments as in the 2D cdls but with two additional
parameters, the thickness t, of the glass plates and the
thicknessts of the solution between the plates.

The calculated eectrical potential @y) in the middle
plane of the cell has the same profile asin the idedlized 2D
cellsand is not shown here. In what foll ows we focus only
on the temperature distribution in the cell and its
dependence on some parameters involved in the problem.
We begin by presenting the two-dimensiona temperature
distribution T(x,y) in the middle plane of the cell and on
the external side of the glass plate at t = 400 s (Fig. 11a
and 11b), calculated for the parameters vdues| = 3 mm,
=10V, & =0,=1.0mm, t, =2 mm and ts= 0.5 mm.
The temperature distribution T(y,2) in the cross section of
the cdl for x = 0 and the same values of parameters is
shown in Fig. 11c. More illustrative for our study are the
profiles of the temperature distribution a ong the cell, T(y),
for some given x and z coordinates and different values of
the parameters invol ved. We will consider the T(y) profiles
in the middle plane of thecell (x=0, z=t, + t/2) and on
the external side of the glass plate (x =0 axd z=0 or
z=2t, + ty).
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Fig. 11. Isothermal lines for the calculated thermal field
in the 3D cdl in the middle plane of the cell (a), on the
external sde of the glass plate (b) and in a vertical cross
section (c); the values on the right arein Kelvin. (See text
for details).

The calculated T(y) profiles in our 3D cel for the
same parameters as those in Fig. 11 are shown in Fig. 12,
together with the T(y) profile for the same valuesof |, @&,
O , &, and at the same time but in the 2D cell with a
compact deposit. First of al we observe that the T(y)
profile in the 3D cell has the same shape asin the 2D cell.
Obviously, for the same vaues of the parameters the
temperaturein the 2D cell is higher than the temperature in
the 3D cell because the electric power is the same but the
heated volume is much larger in the case of 3D cell. We
also observe an important difference in the values of the
maxi mum temperature in the middle plane of the cell and
on the external side of the glass plate. In the same time, we
note that the shape of the T(y) curves in the two planes of
the cell are different for y between 0 and roughly | + 24 :
as normal, the glass plate has a decreasing and smoothing
effect on the temperature profile for the y coordinate lying
in this range. Due to this smoothing effect of the glass
plate on the temperature profile, the resemblance between
our calculated T(y) profile in 3D cdls and the
corresponding experimental profile in Ref. [4] is better
than in the case of 2D cdlls.



278 P. Barvinschi
301.2 300,35

201 4 300.3 -
— 20 cell = ]
< ams | & 300.25
o o
= \ S 02
B 3006 &
fuil
= g 30015 1 ts=0.5mm
£ 3004 A =
2 _ £ 3001 4

oz | | L™ 3D cell T
: ce
qu 300.05 - h=03mm ]
300 - - -
300 : : :
0 oo D'(Dnzn 0.0 004 ] 0.01 0.0z 0.03 0.04
Y y (m)
d

Fig. 12. Calculated temperature profiles along the 2D
and 3D cells, “int” and “ext” means the temperaturein
the middle plane of the cell and on the external side of
the glass plate, respectively, inthe 3D cell. (Seetext for

Fig. 13. Dependence of the calculated temperature

profiles along the 3D cell on the applied eectrical

potential (a), cathodic diffuson layer width (b), wall
thickness (c), and electrolyte thickness (d).

Other calculated T(y) profilesin the two planes of the
3D cell showing the dependence of temperature on @& , &,
tw and ts are presented in in Figs. 13a — d. Keeping at the
same values dl the other parameters and increasing only
the applied eectrical potentiad @&, , the electrical power
becomes larger in the same volume and the temperature
increases too, asis seen in Fig. 13a. The explanations for
the temperature dependence on the variaion of the
cathodic diffusion layer width & (Fig. 13Db) is the same as
in the case of 2D cell and we don’t repeat them here. New
facts in the case of 3D cell are the dependences of T(y) on
the glass plates and solution thickness (Fig. 13c and 13d,
respectively). For a constant value of the solution
thickness and decreasing the glass plates thickness, the
temperature in the entire cell is incressing. This can be
easly understood: the heat source being the same, for a
smaller volume of the system its temperature becomes
higher. In the same time, the difference between the
maxi mum temperature in the solution and on the externa
side of the glass wal is obvioudy smaller when t,
decrease. We have an opposite situation when the solution
thickness is decreased, keeping the same vaue for the
glass plates: the electrica power density is the same but
the volume of the heating source is smaler, so the
temperature of the system decreases when tsis smaller.
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Fig. 14. Comparison of the temperature profiles along

two 3D cdls having the walls made of glass and

Plexiglas, respectively, the other parameters being the
same (see text).
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We saved an very important observation for the end of
this section: the y coordinate of the maxi mum temperature
in the solution is dways smaller than the y coordinate of
the maxi mum temperature on the externa side of the glass
wall. A closer inspection of Figs. 12 - 13 reveals that the
shift Ay between the coordinates of the two maxima
depend on the various parameters involved in the problem
(@, &, ec). Replacing glass with Plexiglas
(c=10"sSm!, k=020W m' K?, p=1190 kg m?,
c = 1470 J kg K™) of the same thickness, the shift Ay is
even larger, as is seen in Fig. 14. This fact can be
understood comparing the thermal diffusion coefficient
a = k / pc, for the media in the cdl (a is roughly
4.0 x 10" m” s* for glass, 1.0 x 10" n? s* for Plexiglas
and 1.4 x 107 n? s* for water). Because the penetration
time [11] veries as l/a, the existence of a difference
between the position of the two temperature maxima and
its dependence on material properties is easy to
understand.

4. Conclusions

We have performed a numerical study of the ohmic
heating in idealized 2D and 3D thin-layer e ectrochemical
deposition cells. Based on experimenta data, the domain
used for the simulation is composed of four regions:
deposit, cathodic diffusion layer, bulk eectrolyte solution
and anodic diffusion layer. We don't take into account the
growth of the deposit and the transport of ions by diffusion
and convection, our model being a static and pure ohmic
one. The mathematical model consist of two PDE, a
Laplace-type equation for the electrical potential and the
time-dependent equation for heat conduction. They are
simultaneoudly solved by the finite element method using
a program caled FlexPDE. We have computed the
electrical potential, electricd field strength, eectrical
current density, and the temperature distribution in the
entire 2D and 3D cells. We were ableto made a parametric
study of the temperature distribution, our results being
confirmed by some experimental facts and pointing out on
other aspects belonging to thin-layer electrodeposition
topic.

The main result of our simulations is a qualitative one
and consists in the resemblance of the caculated
temperature profiles aong the cell and the corresponding
profiles obtained experimentaly in [4]. The features of the
caculated profiles are the same for al the values of the
parameters we have used and this means that the
temperature distribution adong the cell is due to the
specific structure in four regions of an ECD cell. The
temperature increases obtained in our calculations are
smaller than those measured and reported in [4]. This is

not surprising because our model is a very simplified
version of the real world: we have not considered the
growth process, the transport by diffusion and convection,
and any other heat generation process than the ohmic
heating. It is area challenge to includein amodd what is
missing in the s mulation we have performed until now but
the work is in progress. Even with our very simple model
we have obtained some new results; the temperature
profile T(x) in the direction parallel with the growing front,
the shift of the temperature maximum position in 3D cell,
and the dependencies of T(y) and T(X) profiles on various
parameters involved in the calculation. The confirmation
of these results using more sophisticated models may have
some implications on the experimental interpretation of
concentration, flow, thermal and electrical measurements
performed in such systems. All these will dso help in
future studies devoted to the ohmic effects on morphol ogy
selection in thin layer electrochemical deposition.

Acknowledgments

The author is thankful to PDE Solutions Inc. for
providing the student version of the FlexPDE solver.

References

[1] J. Newman, Electrochemical Systems, JWiley &
Sons, New Y ork (2004).

[2] F. Sagues, M. Q. Lopez-Salvans & J. Claret, Physics
Reports 337, 97 (2000).

[3] D. P. Barkey, D. Watt, Z.Liu & S.Raber,
J. Electrochem. Soc.141, 1206 (1994).

[4] M. Schrétter, K. Kassner, |. Rehberg, J. Claret &
F. Sagues, Phys.Rev. E 66, 026307 (2002).

[5] C. Leger, J. Elezgaray & F. Argoul, Phys. Rev.
E 61, 5452 (2000) and references therein.

[6] P. Barvinschi, Analele Universitatii de Vest din
Timisoara, Seria Fizica, 45, 158 (2004).

[7] D. Dobos, Electrochemical Data, Elsevier, New York
(1975).

[8] R. C .Wesst (Ed.), CRC Handbook of Chemistry
and Physics, CRC PressInc., (1977).

[9] J. -N. Chazalvid, Phys. Rev. A 42, 7355 (1990).
[10] PDE Solutions Inc. USA; www.pdesol uti ons.com.
[11] F. White, Heat and Mass Transfer, Addison-Wed ey

Publishing Company, Reading, Massachusetts (1988).

"Corresponding author: pbarvi @physics.uvt.ro



