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The ohmic (Joule) heating in an electrolysis cell during electrochemical deposition (ECD) with a binary electrolyte could be 
significant since the conductivity of the solution without supporting electrolyte is low. Here we report some results 
concerning the simulation of the thermal field due to ohmic heating in idealized 2D and 3D thin-layer ECD cells. The 
mathematical model is based on a Laplace-type equation for the electrical potential and a time-dependent equation for the 
heat conduction. The coupled equations system is solved using a finite element method. The numerical results are 
compared with experimental ones and a qualitative agreement is found.  
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1. Introduction 
 
In electrochemical systems heat may be generated due 

to mass-transport phenomena and chemical reactions [1]. 
The combined set of gradients and of heat- and mass-
transfer rates are coupled and they could modify the local 
properties within a given phase of the system and, as a 
consequence, they are influencing the course of some 
phenomena or the results of some properties 
measurements and their interpretation.  

In a region of complex chemical composition like a 
thin-layer electrodeposition cell the mentioned effects may 
be even more important because in such a small volume 
the electric potential, density or temperature gradients, 
respectively, could have very large values. It is known also 
that in thin-layer ECD cells branched aggregates of 
qualitatively distinct morphologies are observed as the 
deposition parameters are varied [2]; is also important to 
establish the role of thermal effects in the morphology 
selection.  

We have found only two references devoted to some 
features of thermal effects in thin-layer ECD. In the first 
one [3] there is a mention on the concentration 
measurement error due to temperature variation in an 
interferometric studies of branched electrodeposition. The 
other paper [4] is entirely devoted to an experimental 
study of the ohmic heating influence on the flow field in 
thin-layer ECD. In [4] a thin-layer ECD cell was fi lled 
with an ZnSO4 aqueous solution and the electrodeposition 
was performed at a constant electrical potential. The 
deposit at the cathode was belonging to the homogenous 
or dense branched morphology (DBM). The temperature 
field due to Joule heating in the electrolyte solution was 
measured by means of an infrared camera. As mentioned 
in [4], the direct comparabil ity of the results reported in 
this work with experiments performed in standard ECD 
cells is not possible because the ECD cell was of a slightly 
modified type. However, some of the results reported in 
[4] are appropriate to our purpose. These results are 
presented in figures 2 - 4 of the mentioned reference, 
giving an example of a two-dimensional thermography in 

the neighborhood of the anodic zinc wire, and the temporal 
evolution of the temperature field at the cathode and the 
anode as a function of the distance to the electrodes, 
respectively. The properties of the temperature field 
correspond closely with those of the concentration field in 
the cell (see bellow) and this observation motivate our 
approach.  

A detailed description of the dense morphology in 
parallel geometry electrodeposition can be found in Ref. 
[5]. In this type of growth the electrodeposit consist in an 
array of quasi-regularly spaced porous trees (branches or 
filaments), as is shown in Fig. 1. This dense branched 
aggregate is bounded by a flat linear front which invades 
the cell at constant velocity and remains parallel to the 
electrodes. In the absence of convection and due to the fast 
electrodeposition of the cations near and between the tips, 
one can assume that the zone comprised between the 
cathode and the tips of the trees is totally depleted of 
cations. Correspondingly, the anions must be expelled 
from the tip region while the tip advance, otherwise they 
would create a large space charge region. The anions must 
leave this region at the same velocity as the front progress 
in the cell. The growth can thus be regarded as the advance 
of the front of an array of branches at a speed equal to the 
drift velocity of the anions; the growth front push away a 
depletion layer of both anions and cations (concentration 
boundary layer or diffusion layer) whose size remains 
constant. As the total amount of anions must remain 
constant the anions must accumulate near the anode, 
where their charge is balanced by anodic generation of an 
equal amount of cations, resulting a boundary layer of high 
concentration and low resistivity. Between the two 
boundary layers (cathodic and anodic) there is a neutral 
region whose concentration is equal to its initial value. The 
filaments are supposed to be highly conducting, therefore 
they keep the region between the cathode and the tips 
equipotential; the aggregate behave as a moving cathode.  

The cathodic electrodeposition that belongs to the 
dense parallel morphology can be more or less regular. For 
high enough potential values, a regularly columnar or 
channel like deposit is formed [2,3]. 
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Fig. 1. Illustration of dense growth by ECD in thin cell . 
 
 

 
 

Fig. 2. Schematic diagram of the problem space and              
the   boundary  conditions  for  the electr ical and thermal  
                                          problems. 

 
A macroscopic (>0.1 mm) characterization of a dense 

branched aggregate was proposed in [5]. The analysis 
relies on the computation of a correlation function which 
provides a statistical estimate of the mean distance λ 
between branches and of the width w of the branches. If 
one defines the occupancy ratio θ as the proportion of the 
cell width occupied by the deposit then, in a first 
approximation, we can write λθ=w  and the deposit can 
be imagined as a rectilinear equally spaced set of fi laments 
(see Fig. 2). Obviously, this approximation is very good 
for channel like deposits.     

In this paper we present a model for the simulation of 
the thermal field in idealized 2D and 3D thin-layer ECD 
cells by solving the problem of simultaneous electric and 
time-dependent thermal conduction in two or three 
dimensions. The mathematical model is the same as in [6] 
but in the present work we extend the calculations to 
ramified deposits, making a rigorously parametric study of 

the temperature distribution in the ECD cells. The 
numerical results are compared with experimental 
measurements reported in [4] and we point out on some 
new results that could be useful in forthcoming studies 
devoted to this topics.     

 
 
2. Theoretical and numerical model 
 
In the following we present a numerical study of the 

temperature distribution in idealized 2D and 3D ECD cells 
solving the problem of combined electric and heat 
conduction. In our approach we consider only the 
contribution of the dissipated ohmic heat and neglect any 
other form of energy dissipation. In accordance with the 
description of the ECD process in section 1, we consider 
the active part of the electrochemical cell as a thin 
rectangular foil composed of two parallel electrodes made 
of the same metal (Zn), a dilute solution of a salt of this 
metal (in our case ZnSO4), the electrodeposit and two 
diffusion layers, one in front of the deposit and the other 
near the anode. The electrodeposit is supposed to be of the 
same metal as the electrodes. In the idealized 2D cells the 
thickness of the foil lying in the (x,y) plane is supposed to 
be infinitesimally small. The more realistic 3D cell is 
composed of a finite thickness layer of the same 
electrolyte solution, two diffusion layers and a deposit 
sandwiched all of them between two parallel glass plates. 
The geometry of the thin layer in the (x,y) plane between 
the glass plates is the same as in the 2D case. The 
thickness of the 3D cell is measured in the z direction. 
Because the two electrodes are very thin and can conduct 
heat much better than the fluid and the glass, we assume 
that they have a negligible thermal resistance in both the y-
direction and z-direction. As a result, the electrodes can be 
assumed to be transparent for the flux of heat and are 
removed from the model for the calculation of the 
temperature field.   

Each numerical experiment is performed considering 
a fixed shape electrodeposit (no deposit growth). We 
consider the bulk solution and the two diffusion layers to 
be each of them homogeneous and at rest. It is assumed 
that electroneutrality is maintained in all the cell, and the 
diffusive and convective effects are absent. We focus on 
the study of the temperature distribution in such idealized 
2D or 3D cells at a constant voltage applied between the 
two electrodes (potentiostatic conditions). Clearly, the 
model described so far is a first step toward a more 
realistic description of the ohmic heating in thin-layer 
electrodeposition, in which electroneutrality assumption is 
removed and full ion transport is taken into account. The 
analysis of the full problem will be carried out in a 
forthcoming paper.  

Based on previous considerations we can calculate the 
temperature distribution in the electrochemical cell as 
follows. Supposing electro-neutrality holds and in the 
absence of diffusive and convective transport of charge 
carriers, each region of the solution in the cell behaves like 
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an ordinary metal and the electrical current density j
�

 

flowing into the cell is related to the field strength E
�

 by 
  

Φ∇σ−=σ= Ej
��

                      (1) 
 

where σ  is the electric conductivity and Φ  is electric 
potential. Under the same conditions, the conservation of 
electrical charge requires that 
 

0j =⋅∇
�

                                     (2) 
 

Combining the relations (1) and (2) we obtain 
 

0)()E(j =Φ∇σ−⋅∇=σ−⋅∇=⋅∇
��

         (3) 
 

This is a PDE of the Laplace type where the conductivity 
σ  may vary in space. The current density causes 

dissipation of heat at a rate  Ej
��

⋅   per unit volume. This 
electric power will appear as a source term  h  in the time-
dependent equation for heat conduction 
 

h
t

T
cf p =

∂
∂ρ+⋅∇

�

                           (4) 

where T is the absolute temperature, Tkf ∇−=
�

 the heat 
flux density, k the thermal conductivity, ρ  the mass 
density and cp the specific heat capacity. In order to 
calculate the temperature distribution in the ECD cell we 
must solve simultaneously equation (3) for the electrical 
potential and equation (4) for temperature with appropriate 
initial and boundary conditions.  

Each region of the 2D or 3D cell is characterized by 
its own electrical and thermal conductivity, mass density 
and specific heat capacity. Some data are taken from [7] 
and [8] and all of them are summarized in Table 1. For the 
purpose of the present study these properties are assumed 
temperature invariant.  
 

Table 1. Physical and chemical property data. 

 
 k 

Wm-1K-1 

�  
	 -1m-1 


  cp 

Jm-3K-1 

Deposit (Zn) 121 1.5 × 107 2.78 × 106 
Cathodic diffusion layer  
(0.001 M/l) 

0.6 0.005 4.0 × 106 

Neutral solution (0.1 M/l) 0.4 0.456 4.5 × 106 
Anodic diffusion layer  
(0.25 M/l) 

0.6 10 4.6 × 106 

Glass plates 0.78 10-11 2.268 × 106 
 

The initial conditions are always T = 300K for the 
temperature and Φ  = 0 for the electrical potential. The 
boundary conditions are of Dirichlet and Neumann type 
and they must be specified only on the boundary 

separating the system and its surroundings: 0Φ−=Φ and 

0n/T =∂∂  on the cathode side, 0Φ+=Φ  and 

0n/T =∂∂  on the anode side and 0n/ =∂Φ∂  and 

0TT =  on the lateral boundaries of the cell, where 0Φ  is 

half the voltage applied to the ECD cell and n
�

 is the 
outward normal at the boundary of the domain. For the 3D 
cell additional boundary conditions were specified on the 
external faces of the glass plates: for the lateral ones the 
conditions are the same as for the corresponding sides of 
the 2D cell, and for the bottom and up faces we put 

0n/ =∂Φ∂  and 0n/T =∂∂ . In our problem no 
boundary conditions are needed for Φ  and T at the 
interfaces between two different regions because the 
program treat as continuous the electrical potential and the 
temperature across the interfaces.   

In the case of Joule heating, there are a variety of 
possible electrode boundary conditions for the thermal 
problem. An inspection of the experimental temperature 
profiles shown in Figs. 3 and 4 of Ref. [4] may suggests 
that the thermal boundary conditions are changing in time. 
For example, we think that on the cathode side there is a 
first period when the boundary conditions must be of the 
Neumann type but with a non-vanishing value of the 
outward surface-normal flux n/T ∂∂ , fol lowed by a 
regime when the boundary conditions are of the Dirichlet 
type (T is some constant temperature). For the sake of 
simplicity, in our calculations we have adopted the 
mentioned boundary conditions but a study of other 
choices for this type of problem could be interesting.  

For the numerical solution of the equations we have 
used the student version of the finite element PDE solver 
FlexPDE [10]. A 2D problem space is divided into 
triangular elements and the variables are approximated by 
second or third order polynomials; in a 3D problem the 
space is divided into tetrahedrons. The program employs 
an adaptive mesh refinement technique to improve the 
accuracy of the solution.  

 
 
3. Results and discussion 
 
3.1 Thermal field in idealized 2D cells 
 
As a first approach to the analysis of the thermal field 

in simplified thin-layer ECD cells we take a 2D ramified 
deposit with ten equidistant spikes having a compact 
rectangular shape. The problem space is shown in Fig. 2. 
The length and width of the cell are the same in all 
numerical experiments, Ly = 40 mm and 2Lx = 20 mm 
respectively. The distance between the axis of two 
successive spikes is λ = 2 mm. Based on experimental 
findings concerning the homogeneous electrodeposition 
from ZnSO4 aqueous solution, in our model we suppose 
that between spikes there is pure water. A number of 
parameters in the problem can be varied: the applied 
electric potential Φ0, the width δc and δa of the cathodic 
and anodic diffusion layers respectively, the physical 
properties of the regions in the cell ( σ , k, ρ , cp), the 

length l and the width w of the spikes in the deposit. We 
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are able than to make a parametric study of the ohmic 
heating phenomenon in our simplified ECD cells. We 
performed calculations for various values of Φ0 , δc, l and 
w; because the width of the cell has a constant value, 
changing w means a variation of the occupancy ratio θ. 
For θ = 1 the spikes touch each other and the deposit 
becomes a compact one. 
 

 
Fig. 3. Equipotential lines for the solved electrical 
potential near the deposit; the values of the contours are  
      given on the right in volts (see text for detai ls).   

 

 
 

Fig. 4. Isothermal lines for the calculated thermal field in 
the  entire  ECD  cell  arising  from   Joule   heating;  the  
    values on the right are in Kelvin (see text for details). 

 
We have calculated the two-dimensional electrical 

potential Φ(x,y) and the electric field )y,x(E
�

 in the cell. A 

typical result for Φ(x,y) obtained for the values of 
parameters l = 2 mm, Φ0 =  10 V, δc = δa = 0.8 mm,                 
θ = 0.73 at the moment t = 400 s is shown in Fig. 3. We 
see that the equipotential lines are deformed in the usual 
manner due to the presence of spikes. The electric field 
(not shown here) is concentrated on the tips of spikes and 

almost vanish in the rest of the cell, having very small 
values between the spikes.  

The calculated temperature distribution in the entire 
cell T(x,y) for the same values of parameters as in Fig.3 is 
shown by contours lines in Fig. 4. A painted image of this 
temperature distribution resemble quite well the 
thermography in Fig. 2 of reference [4]. The temporal 
evolution of the temperature distribution along the y 
direction in the cell, for the same values of parameters, is 
shown in Fig. 5. The general behavior of the simulated 
temperature distribution is qualitatively similar to that 
found experimentally and reported in Ref. [4] (see Figs. 3 
and 4 of this reference), but the temperature increase is not 
the same. The most important features of the temperature 
profile is the existence of a local temperature maximum 
whose position correspond to that of the cathodic diffusion 
layer, followed by a plateau of spatially quasi-constant 
temperature extended in a region between the two 
diffusion layers.  

 

 
Fig. 5. Calculated temperature profiles along the 2D cell  
                (see text for the values of parameters). 

 

 
Fig. 6. The dependence of the calculated temperature 
along  the  2D  cell  on the voltage applied to the cell (see  
              text for the values of the other parameters). 

 
We make a step further in our analysis focusing on the 

dependence of the temperature profile along the cell, T(y), 
on some parameters involved in the model. First of all, one 
would expect an increase of the temperature in the entire 
cell as a result of an increase of the applied electric 
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potential Φ0. Our calculation show that this assertion is 
true, as one can see in Fig. 6 where we have represented 
the T(y) distribution for three values of  Φ0  (10 V, 15 V, 
and 20 V) at t = 400 s and keeping all the other parameters 
at the same values (l = 2 mm, δc = δa = 0.8 mm, θ = 0.73). 
It is also remarkable that for various values of Φ0 the 
shape of the T(y) distribution is the same.  

Turning out to the dependence of the temperature 
profile T(y) on the occupancy ratio θ, the result of the 
calculation for  l = 2 mm, Φ0 = 10 V, δc = δa = 0.8 mm at  
t = 400 s and three values of  θ (0.23, 0.60 and 1.00) are 
shown in Fig. 7a. Trying to explain this behavior of the 
temperature we have performed a calculation of the 
electrical potential Φ(y) along the cell for the same values 
of the parameters and the results are shown in Fig. 7b. 
There is a remarkable resemblance between the profiles in 
this figure and the profiles for the electric potential 
obtained by Chazalviel (see Figs. 2 and 3 in Ref. [9]). We 
observe that the most important part of the potential drop 
in the cell is confined in the very narrow region in front of 
the deposit (the cathodic diffusion layer). As is seen in  
Fig. 7b, a slightly dependence of Φ(y) with the occupancy 
ratio is observable for higher values of  θ and a more 
important one for small values of θ. In our pure ohmic 
model this behavior of Φ(y) can be explained by the 
increase of the potential drop along the deposit as a result 
of an increasing of the electrical resistance when θ 
decrease. A motivation for the dependence of the 
temperature distribution T(y) on the occupancy ratio can 
now be offered. It is clearly seen that in the deposit region 
the temperature is higher for small values of θ and that in 
front of the cathodic diffusion layer the situation is 
reversed (the temperature increase for high occupancy 
ratio). These observations are in accord with the electrical 
potential dependence on θ discussed previously: the 
potential drop along the deposit is more important for 
small values of θ, and the temperature in this region wil l 
increase when θ decrease because the electrical power has 
the same behavior  as the potential. In the same time, the 
potential drop in the bulk solution is increasing for higher 
values of θ, so the temperature in this region increases 
when the occupancy ratio increases too. 

 

 
a 

 

 
b 

 
Fig. 7. Dependence of the calculated temperature profile 
T(y) on the occupancy ratio θ (a), and the corresponding  
        electrical potential profiles along the cell (b). 

 

 
a 

 

 
b 

 
Fig. 8. Dependence of the calculated temperature profile 
T(y) on the cathodic diffusion layer width δc (a), and the 
corresponding electrical potential profiles along the cell (b). 

 
Another clear effect on the temperature profile T(y) is 

due to the variation of the cathodic diffusion layer width 
δc. The calculated T(y) profiles for l = 2 mm, Φ0 = 10 V, 
δa = 0.8 mm, θ = 0.73 at t = 400 s, for three values of δc 
(0.4 mm, 0.8 mm and 1.2 mm), are shown in Fig. 8a. The 
corresponding electrical potential profiles (Fig. 8b) give 
once again the motivation for the behavior of the 
temperature distribution in the cell: an increase of the 
potential drop in the bulk solution follows the reduction of 
the diffusion layer width and this implies an increase of 
the temperature in the bulk solution region. 
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Fig. 9. Dependence of the calculated temperature profile 
T(y)  on σ,  k  and  ρcp  in  the  deposit;  the  indicated  
             values have the same units as in Table 1.   

 
 

As it is known, the density of metal in the 
electrodeposit region is very low (see section 1) and the 
previous assumption of homogeneous and compact pure 
metallic deposit is a very crude approximation. Despite the 
fact that the deposit is considered to have a very good  
electrical  and thermal conductivity, we think that the 
appropriate average values for σ , k, ρ and cp for a kind of 
homogeneous and compact deposit are closer to those of 
an aqueous solution rather than those of a metal. For this 
reason we have performed a number of simulations taking 
for σ , k and ρ cp in the deposit region some fictitious 
values ranging between the corresponding ones for water 
and metallic zinc, the other parameters being the same:              
l = 2 mm, Φ0 = 10 V, δc = δa = 0.8 mm, θ = 1.00. The 
resulting T(y) profiles at t = 400 s are shown in Fig. 9. We 
see that the values of temperature in the deposit region are 
increasing if the values of σ and k become more and more 
closer to that of water. In the same time, the T(y) profile in 
the rest of the cell is roughly unchanged.      

From the results presented so far it is clearly seen that 
he temperature profi le along the cell, T(y), has roughly the 
same shape whatever the θ may be, in other words for all 
morphologies belonging to he homogeneous growth. 
However, important differences between the shapes of the 
temperature profiles in the x direction (parallel to the 
growth front) are seen when we change the occupancy 
ratio and implicitly the morphology of the deposit. Such 
temperature distributions are shown in Figs. 10a – d for      
l = 2 mm, Φ0 = 10 V, δc = δa = 0.8 mm and three 
occupancy ratio (θ = 0.23, 0.60 and 1.00) at t = 400 s. The 
T(x) profiles are calculated at the distances y = l - δc,                 
y = l, y = l + δc and y = l + 2δc from the cathode. These 
profiles suggest that important gradients of temperature 
may exist between the spikes and in the tip region. The 
possible influence of such temperature gradients on the 
cathodic convective rolls is a topic that will  be carried out 
in a forthcoming paper. T(x) profiles calculated for 
different values of the cathodic diffusion layer width δc, 
not shown here, conduct to similar results: when δc 
increase, T(x) decrease in the deposit area but increase in 
front of the deposit; as compared to the occupancy ratio 
influence, this time the temperature gradients are smaller.  

 

 
a 
 

 
b 

 
c 

 
d 

 
Fig. 10. Calculated temperature profiles in the direction 
parallel to the growth front at the distances y = l - δc (a), 
y =  l (b), y =  l + δc (c) and y = l + 2δc (d) from the 
cathode, for the occupancy ratio θ =  0.23 (1), θ =  0.60 
(2), and θ = 1.00 (3). (See text for the other  parameters). 
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3.2 Thermal field in simplified 3D cells 
 
We next consider the case of a more realistic ECD 

cell, composed of a thin layer of the same electrolyte, a 
metallic deposit (Zn) and two diffusion layers (cathodic 
and anodic) confined between two parallel glass plates. 
Due to the limited number of nodes in the student version 
of the FlexPDE program, the geometry of the thin layer 
between the glass plates in the (x,y) plane is very simple: 
the deposit is supposed to be a homogeneous and compact 
rectangle (occupancy ratio θ = 1), having the length l and 
the width 2Lx. Because the study in the present work is a 
qualitative one and taking into account the results obtained 
in the previous section, the case θ = 1 is appropriate for 
our purposes. We have performed the same numerical 
experiments as in the 2D cells but with two additional 
parameters, the thickness tw of the glass plates and the 
thickness ts of the solution between the plates.  

The calculated electrical potential Φ(y) in the middle 
plane of the cell has the same profile as in the idealized 2D 
cells and is not shown here. In what follows we focus only 
on the temperature distribution in the cell and its 
dependence on some parameters involved in the problem. 
We begin by presenting the two-dimensional temperature 
distribution T(x,y) in the middle plane of the cell and on 
the external side of the glass plate at t = 400 s (Fig. 11a 
and 11b), calculated for the parameters values l = 3 mm, 
Φ0 = 10 V, δc = δa = 1.0 mm, tw = 2 mm and ts = 0.5 mm. 
The temperature distribution T(y,z) in the cross section of 
the cell for x = 0 and the same values of parameters is 
shown in Fig. 11c. More illustrative for our study are the 
profiles of the temperature distribution along the cell, T(y), 
for some given x and z coordinates and different values of 
the parameters involved. We will  consider the T(y) profi les 
in the middle plane of the cell (x = 0, z = tw + ts/2) and on 
the external side of the glass plate (x = 0 and z = 0 or                
z = 2tw + ts).  

 
 

 
 

a 
 

 
b 

 
 

 
c 

Fig. 11. Isothermal lines for the calculated thermal field 
in the 3D cell in the middle plane of the cell  (a), on the 
external side of the glass plate (b) and in a vertical cross 
section (c); the values on the right are in Kelvin. (See text  
                                     for details). 
 

 
The calculated T(y) profiles in our 3D cell for the 

same parameters as those in Fig. 11 are shown in Fig. 12, 
together with the T(y) profi le for the same values of  l, Φ0 , 
δc , δa  and at the same time but in the 2D cell with a 
compact deposit. First of all we observe that the T(y) 
profile in the 3D cell has the same shape as in the 2D cell. 
Obviously, for the same values of the parameters the 
temperature in the 2D cell is higher than the temperature in 
the 3D cell because the electric power is the same but the 
heated volume is much larger in the case of 3D cell. We 
also observe an important difference in the values of the 
maximum temperature in the middle plane of the cell and 
on the external side of the glass plate. In the same time, we 
note that the shape of the T(y) curves in the two planes of 
the cell are different for y between 0 and roughly l + 2δc : 
as normal, the glass plate has a decreasing and smoothing 
effect on the temperature profile for the y coordinate lying 
in this range. Due to this smoothing effect of the glass 
plate on the temperature profile, the resemblance between 
our calculated T(y) profile in 3D cells and the 
corresponding experimental profile in Ref. [4] is better 
than in the case of 2D cells.  
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Fig. 12. Calculated temperature profiles along the 2D 
and 3D cells; “ int”  and “ ext”  means the temperature in 
the middle plane of the cell  and on the external side of 
the  glass  plate,  respectively, in the 3D cell. (See text for  
                                       details). 

 

 
a 

 
b 

 
c 

 

 
d 

 

Fig. 13. Dependence of the calculated temperature 
profiles along the 3D cell on the applied electrical 
potential  (a),  cathodic  diffusion  layer  width   (b),  wall  
             thickness (c), and electrolyte thickness (d). 

 
Other calculated T(y) profiles in the two planes of the 

3D cell showing the dependence of temperature on Φ0 , δc, 
tw and ts are presented in in Figs. 13a – d. Keeping at the 
same values all the other parameters and increasing only 
the applied electrical potential Φ0 , the electrical power 
becomes larger in the same volume and the temperature 
increases too, as is seen in Fig. 13a. The explanations for 
the temperature dependence on the variation of the 
cathodic diffusion layer width δc (Fig. 13b) is the same as 
in the case of 2D cell and we don’ t repeat them here. New 
facts in the case of 3D cell are the dependences of T(y) on 
the glass plates and solution thickness (Fig. 13c and 13d, 
respectively). For a constant value of the solution 
thickness and decreasing the glass plates thickness, the 
temperature in the entire cell is increasing. This can be 
easily understood: the heat source being the same, for a 
smaller volume of the system its temperature becomes 
higher. In the same time, the difference between the 
maximum temperature in the solution and on the external 
side of the glass wall is obviously smaller when tw 
decrease. We have an opposite situation when the solution 
thickness is decreased, keeping the same value for the 
glass plates: the electrical power density is the same but 
the volume of the heating source is smaller, so the 
temperature of the system decreases when ts is smaller.  

 

 
Fig. 14. Comparison of the temperature profiles along 
two 3D cells having the walls made of glass and 
Plexiglas,  respectively,  the  other  parameters  being the  
                                same (see text).   
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We saved an very important observation for the end of 
this section: the y coordinate of the maximum temperature 
in the solution is always smaller than the y coordinate of 
the maximum temperature on the external side of the glass 
wall. A closer inspection of Figs. 12 - 13 reveals that the 
shift ∆y between the coordinates of the two maxima 
depend on the various parameters involved in the problem 
(Φ0, δc, etc). Replacing glass with Plexiglas                              
(σ = 10-13 S m-1, k = 0.20 W m-1 K-1, ρ = 1190 kg m-3,             
c = 1470 J kg-1 K-1) of the same thickness, the shift ∆y is 
even larger, as is seen in Fig. 14. This fact can be 
understood comparing the thermal diffusion coefficient                  
a = k / ρcp for the media in the cell (a is roughly                                     
4.0 × 10-7 m2 s-1 for glass, 1.0 × 10-7 m2 s-1 for Plexiglas 
and 1.4 × 10-7 m2 s-1 for water). Because the penetration 
time [11] varies as 1/a, the existence of a difference 
between the position of the two temperature maxima and 
its dependence on material properties is easy to 
understand. 

 
4. Conclusions 
 
We have performed a numerical study of the ohmic 

heating in idealized 2D and 3D thin-layer electrochemical 
deposition cells. Based on experimental data, the domain 
used for the simulation is composed of four regions: 
deposit, cathodic diffusion layer, bulk electrolyte solution 
and anodic diffusion layer. We don’ t take into account the 
growth of the deposit and the transport of ions by diffusion 
and convection, our model being a static and pure ohmic 
one. The mathematical model consist of two PDE, a 
Laplace-type equation for the electrical potential and the 
time-dependent equation for heat conduction. They are 
simultaneously solved by the finite element method using 
a program called FlexPDE. We have computed the 
electrical potential, electrical field strength, electrical 
current density, and the temperature distribution in the 
entire 2D and 3D cells. We were able to made a parametric 
study of the temperature distribution, our results being 
confirmed by some experimental facts and pointing out on 
other aspects belonging to thin-layer electrodeposition 
topic. 

The main result of our simulations is a qualitative one 
and consists in the resemblance of the calculated 
temperature profiles along the cell and the corresponding 
profiles obtained experimentally in [4]. The features of the 
calculated profiles are the same for all the values of the 
parameters we have used and this means that the 
temperature distribution along the cell is due to the 
specific structure in four regions of an ECD cell. The 
temperature increases obtained in our calculations are 
smaller than those measured and reported in [4]. This is 

not surprising because our model is a very simplified 
version of the real world: we have not considered the 
growth process, the transport by diffusion and convection, 
and any other heat generation process than the ohmic 
heating. It is a real challenge to include in a model what is 
missing in the simulation we have performed until now but 
the work is in progress. Even with our very simple model 
we have obtained some new results: the temperature 
profile T(x) in the direction parallel with the growing front, 
the shift of the temperature maximum position in 3D cell, 
and the dependencies of T(y) and T(x) profiles on various 
parameters involved in the calculation. The confirmation 
of these results using more sophisticated models may have 
some implications on the experimental interpretation of 
concentration, flow, thermal and electrical measurements 
performed in such systems. All these will also help in 
future studies devoted to the ohmic effects on morphology 
selection in thin layer electrochemical deposition. 

 
Acknowledgments 
 
The author is thankful to PDE Solutions Inc. for 

providing the student version of the FlexPDE solver.         
 
References 

 
  [1] J. Newman, Electrochemical Systems, J.Wiley & 
         Sons, New York (2004). 
  [2] F. Sagues, M. Q. Lopez-Salvans & J. Claret, Physics  
        Reports 337, 97 (2000). 
  [3] D. P. Barkey, D. Watt, Z.Liu &  S.Raber,  
         J. Electrochem. Soc.141, 1206 (1994). 
  [4] M. Schrötter, K. Kassner, I. Rehberg, J. Claret &  
        F. Sagues, Phys.Rev. E 66, 026307 (2002). 
  [5] C. Leger, J. Elezgaray & F. Argoul, Phys. Rev.  
        E  61, 5452 (2000) and references therein. 
  [6] P. Barvinschi, Analele Universitatii de Vest din  
        Timisoara, Seria Fizica, 45, 158 (2004). 
  [7] D. Dobos, Electrochemical Data, Elsevier, New York  
         (1975). 
  [8] R. C .Weast (Ed.), CRC Handbook of Chemistry  
        and Physics, CRC Press Inc., (1977). 
  [9] J. -N. Chazalviel, Phys. Rev. A 42, 7355 (1990). 
[10] PDE Solutions Inc. USA; www.pdesolutions.com. 
[11] F. White, Heat and Mass Transfer, Addison-Wesley  
        Publishing Company, Reading, Massachusetts (1988). 
 
________________ 
*Corresponding author: pbarvi@physics.uvt.ro 

 


