Polarization effects of Nd³⁺ spectra in strontium hexa-aluminates

A. LUPEI, V. LUPEI^{*}, C. GHEORGHE, L. GHEORGHE, E. ANTIC-FIDANCEV^a, D. VIVIEN^a, G. AKA^a Institute of Atomic Physics - INFLPR, 077125 Bucharest – Romania ^aENSCP, Lab. de Chimie Appliquée de l'Etat Solide, Paris, France

The disordered strontium hexa-aluminate crystals $Sr_{1-x}Nd_yLa_{x-y}Mg_xA_{1_2-x}O_{19}$ (ASL) proved to be a system with a good potential for ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ laser emission at ~ 900 nm. There are two main different non-equivalent Nd³⁺ centers in disordered ASL crystals. New data on the symmetry of one the Nd³⁺ centers in ASL, prevailing at low x composition parameter, provided by the polarized absorption spectra are presented. The results of a parametric crystal field calculation, based on the experimental data, are also analyzed.

(Received October 14, 2005; accepted January 26, 2006)

Keywords: Strontium hexa-aluminates laser crystals, Nd³⁺ spectroscopy, Polarization spectra

1. Introduction

The requirement of new wavelength lasers in blue, for different applications, impulsed the research of the infrared 900-950 nm quasi-three-level ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ emission of Nd³⁺ in various crystals and its frequency doubling conditions. Some of the applications, such as display, necessitate low wavelengths in the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ Nd³⁺ laser emission. One of the shortest wavelength reported for Nd³⁺ ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ lasers, i.e. ~ 900 nm, has been reported [1] in strontium lanthanum aluminates Sr_{1-x}Nd_yLa_{x-y}Mg_xAl_{12-x}O₁₉ (ASL: Nd) crystals.

In the SrAl₁₂O₁₉ hexa-aluminates crystals with uniaxial magnetoplumbite-like structure, space group P6₃/mmc, the divalent Sr²⁺ ions in the large cationic (2*d*) sites with D_{3h} local symmetry, could be replaced the trivalent Ln³⁺ (La³⁺ and Nd³⁺) ions. The charge compensation can be accomplished by a partial substitution of Al³⁺ with Mg²⁺ [2-3] and the Nd³⁺ content can be diluted within the limits imposed by the concentration self-quenching by the optically inert La³⁺ ions [5], obtaining the disordered Sr_{1-x}Nd_yLa_{x-y}Mg_xAl_{12-x}O₁₉ (ASL: Nd) crystals. The high O²⁻ coordination (12 near neighbors) of Nd³⁺ (2*d*) site and its large size determine a high energetic position of the ⁴F_{3/2} manifold as well as a moderate crystal field splitting of ⁴I_{9/2}

Though the Nd³⁺ spectra in ASL have been initially interpreted in terms of a single Nd³⁺ structural center [2-6], recent high-resolution optical spectroscopy [7-9] of ASL: Nd for $0.2 \le x \le 0.4$, $0.05 \le y \le 0.15$ revealed the clear presence of two types of structural centers, C₁ and C₂. The relative proportion of the two centers is determined by the composition parameter *x*: C₁ dominates at high *x*, while C₂ has large concentrations only at low *x* values. Models for these centers have been also proposed [8]. Based on the correlation of the spectral and structural data, improved laser emission characteristics at ~901 nm in ASL: Nd have been obtained [10] by selection of the optimal compositions and pumping conditions. However, some basic problems on the spectral characteristics, structure and symmetry of non-equivalent Nd³⁺ centers in ASL are still non-elucidated.

The purpose of this study is to obtain new data on the symmetry of one of the Nd^{3+} centers in ASL (C₂), provided by the polarized absorption spectra and on the crystal field strength by a parametric calculation.

2. Experiment

The Sr_{1-x}Nd_yLa_{x-y}Mg_xAl_{12-x}O₁₉ (ASL: Nd) crystals with *x*=0.05 - 0.5, *y*=0.05, grown by Czochralski method in iridium crucibles, were used in this study. The optical spectroscopic measurements of Nd³⁺ in ASL crystals were performed on an extended spectral range up to ~ 24000 cm⁻¹. The absorption spectra at 15 K and 300 K were measured with a set-up consisting of a tungsten halogen lamp, a GDM 1m monochromator with resolution of ~0.3 cm⁻¹, using a photon counting system with a multichannel analyzer Turbo-MCS and a helium closed cycle system for low temperatures.

3. Experimental results - polarization

The Nd³⁺ two classes of centers, C₁ and C₂, in ASL are well separated in ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ transition (Fig. 1a), but practically coincident in ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$ transition (Fig. 1b). The main differences between the spectra of the two Nd³⁺ main centers reside in the composition dependence, C₂

center dominate at low x (≤ 0.1), C₁ center becomes prevailing at x ≥ 0.5 and in the Stark splitting of ${}^{4}F_{3/2}$ manifold (about twice larger for C₁ center than for C₂). An additional splitting of C₂ lines was observed at very low x, suggesting the existence of two distinct C₂ type centers (C_{2} and C_{2}) [9].

Fig. 1. The composition dependence of a) ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ and b) ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$ absorption spectra of Nd^{3+} in strontium hexa - aluminate crystals at 15 K (the Nd content is y=0.05).

b)

The polarization data could provide information on the local symmetry of a specific center. The measurements in polarized light were concentrated on the samples with x = 0.05 (for C₂ centers), with light propagation in the mirror (**a**, **b**) plane along **a** crystallographic axis, which is perpendicular on **c**, the principal axis of D_{3h} symmetry group. The measurements were performed at 15 and 300 K, the later data proved to be informative for polarization effects in transitions starting from the upper Stark levels of ${}^{4}I_{9/2}$. Generally the $\sigma(\vec{E} \perp c)$ lines are more intense than the $\pi(\vec{E} \parallel c)$ ones (\vec{E} - is the electric field direction). In the ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$ transition strong polarization effects are observed as illustrated in the 300 K absorption spectra (Fig. 2). The same is true for other transitions too, such as the ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$, ${}^{4}F_{9/2}$ or ${}^{2}H_{11/2}$ transitions (Fig. 2). Z_{i} denotes the Stark components of ${}^{4}I_{9/2}$ manifold and R_{i} those of ${}^{4}F_{3/2}$.

Fig. 2. The σ and π absorption spectra for several Nd^{3+} transitions in strontium hexa-aluminate of x=y=0.05sample, ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ at 300 K (left) and ${}^{4}I_{9/2} \rightarrow {}^{4}F_{9/2}$, ${}^{4}I_{9/2} \rightarrow {}^{2}H_{11/2}$ at 15 K (right).

An energy level scheme for C₂ center was obtained. The intense lines could be connected to C₂ centers due to their characteristic two line structure, but some small lines belonging to C₁ center are also present in the spectra (for x=y=0.05 sample). The previous energy levels scheme for the Nd³⁺ in ASL (x=y=0.03 - 0.15) [6] based on an unique center model, is in disagreement with our data for many manifolds, such as ⁴I_{9/2}, ⁴F_{3/2}, F_{9/2}, ²H_{11/2} etc.

4. Results and discussion

Based on the spectral data and crystal structure, models for the two main Nd3+ centers in ASL (Sr1- $_xNd_yLa_{x-y}Mg_xAl_{12-x}O_{19}$) have been proposed [8]: the Nd³⁺ ions in both cases has the same ionic environment 12 O^{2-} , the differences coming from the electric charge differences of nearby cations (Sr^{2+}, Ln^{3+}) in the six (2d) sites. Thus, the C₂ centers correspond to Nd^{3+} in a Sr^{2+} (2d) site with no nearby Ln^{3+} (Nd³⁺, La^{3+}) ions and C_1 lines are composite lines of various structural centers of Nd³⁺ in a (2d) site with one up to all the six (2d) nearest neighbor sites occupied by Ln^{3+} . The additional splitting of C_2 lines in two components, observed at small x, has been tentatively connected with the perturbing effect of the Mg^{2+} ions that substitute Al^{3+} . It is very likely that the component $C_2^{"}$ is due to a $\mathrm{Nd}^{^{3+}}$ having only $\mathrm{Sr}^{^{2+}}$ and $\mathrm{Al}^{^{3+}}$ ions as near neighbors and far away charge compensated with Mg²⁺, and the lines C_2 to a collection of centers having Mg²⁺ as neighbors in various Al³⁺ tetrahedral sites close to Nd^{3+} [9]. The substitution of an Al^{3+} ion by a Mg^{2+} ion in the nearest coordination sphere of tetrahedral sites reduces the ideal electric charge of this sphere and its contribution to the crystal field potential. Combined with the fact that the relative concentration of Mg²⁺ to that of all Al³⁺ ions is small, the crystal field perturbation induced by Mg^{2+} is weaker than that due to Ln^{3+} ions. Indeed, the crystal field splitting of ${}^{4}F_{3/2}$ for C₂ center (at x=0.05) is ~ 50 cm⁻¹ as compared with ~ 100 cm⁻¹ for C₁ center. The cationic disorder can induce lowering in symmetry from D_{3h} for both centers, with much larger effects expected for C_1 center, in which case one could not speak of a definite symmetry. We shall restrain from this reason to the discussion of polarization effects to C2 centers where the perturbation induced by disorder is weak.

The previous polarization measurements [6] have been analyzed in terms of an unique Nd³⁺ center in ASL and assuming that its local symmetry is pure D_{3h} . The samples analyzed in the present paper (x=y up to 0.05) have similar compositions to those (x=y=0.03, 0.15) analyzed in [6], but even if C_2 center is prevailing at these compositions, the presence of the second center is clear (Fig. 1), and must be taken into account.

If the local symmetry at the Nd³⁺ ion is ideal D_{3h} with threefold axis along *c*, the *J* manifolds are split in the crystal field into (2J+1)/2 Stark doublets characterized by Γ_7 , Γ_8 and Γ_9 irreducible representations [11,12]. The crystal field levels of some *J* manifolds interesting for our study are $D^{1/2} \rightarrow \Gamma_7$, $D^{3/2} \rightarrow \Gamma_7 + \Gamma_9$, $D^{9/2} \rightarrow \Gamma_7 + 2\Gamma_8 + 2\Gamma_9$. The electric –dipole selection rules for D_{3h} point group [11, 12] are presented in Table 1, with σ ($\vec{E} \perp c$) and π ($\vec{E} \parallel c$), and \vec{E} - the electric field direction. For lower symmetries the selection rules relax, and for symmetries lower than C_{2v} all the transitions are electric - dipole allowed.

Table 1. Electric - dipole selection rules for Kramers ions in D_{3h} symmetry, with $\sigma(\vec{E} \perp c)$ and $\pi(\vec{E} \parallel c)$, polarizations and \vec{E} - the electric field direction.

	Γ_7	Γ_8	Γ9
Γ_7	-	σ, π	υ
Γ_8	σ, π	-	σ
Γ_9	σ	σ	π

The polarization spectra can be discussed in relation to the selection rules for the D_{3h} symmetry group. Since the ${}^{4}I_{9/2}(Z_{1}) \rightarrow {}^{2}P_{1/2}(\Gamma_{7})$ line for C_{2} center (x = y = 0.05) has similar intensity in both polarizations, the ground Stark level Z_{1} of ${}^{4}I_{9/2}$ could be associated to a Γ_{8} representation (Table 1). The symmetry of the ground state level could be also inferred from EPR data, since quite different g - factors are expected if Γ_{7} ($g_{\perp} = 5g_{\parallel}$), Γ_{9} ($g_{\perp} = 0$) or Γ_{8} ($g_{\parallel} \sim 4$, $g_{\perp} \sim 2$) are ground states [13]. The recent EPR data for ASL: Nd (x=y=0.01), with $g_{\parallel} = 3.75$ and $g_{\perp} = 1.76$ [14], sustain the assignment of the Γ_{8} representation to the ground Stark level of ${}^{4}I_{9/2}$.

The hot band structure of ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$ (Γ_{7}) polarized spectra of C₂ center (*x*=0.05) at 300 K (Fig. 2) could be well reproduced if the Stark levels of ground manifold ${}^{4}I_{9/2}$ are associated to irreducible representations of D_{3h} as follows: Z₁ - Γ_8 , Z₂ - Γ_7 , Z₃ - Γ_9 , Z₄ - Γ_8 , Z₅ - Γ_9 . The Z_{1,4}(Γ_8) $\rightarrow {}^{2}P_{1/2}$ (Γ_7) lines are observed in both polarizations, ${}^{4}I_{9/2}$ Z₂(Γ_7) $\rightarrow {}^{2}P_{1/2}$ (Γ_7) is strictly forbidden and ${}^{4}I_{9/2}$ Z_{3,5}(Γ_9) $\rightarrow {}^{2}P_{1/2}$ (Γ_7) are observed only in σ spectra. Fig. 3 presents part of the assignment of C₂ center lines for ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ and ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$ transitions in terms of D_{3h} selection rules; f denote a strictly forbidden transition.

Fig. 3. The assignment of part of the $Nd^{3+} {}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ and ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$ polarized absorption lines, at 300 K, in terms of D_{3h} symmetry for C_2 center.

The polarization absorption data for the transitions to upper levels with J>3/2 for the C₂ center could be also interpreted in terms of D_{3h} local symmetry. For example in the case of ${}^{4}I_{9/2} \rightarrow {}^{4}F_{9/2}$ (Γ_7 , $2\Gamma_9$, $2\Gamma_8$) transition, at 15 K, for *x*=0.05 (Fig. 2) only three lines are present in the σ spectra of the C₂ centers, corresponding to the ${}^{4}I_{9/2}$ Z₁ (Γ_8) $\rightarrow {}^{4}F_{9/2}$ (Γ_7 , $2\Gamma_9$) allowed transitions.

An experimental energy level scheme was assigned to C_2 (C_2) Nd³⁺ center in ASL from 15 and 300 K absorption (including polarization data) or low temperature selectively excited emission for x = y = 0.05sample. Whereas in the ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ transition the lines belonging to the two centers could be clearly separated, in others ranges, especially at high energies, this division is more difficult. Parts of experimentally determined energy levels are given in Table 2. The experimental Stark levels in parentheses in Table 2 refer to small lines and their assignment is uncertain. Polarization data including hot band structure were used to assign irreducible representations to many of these levels. Significant differences between the levels assigned in this paper and those given in Table 3 of [6] are observed, not only in ${}^{4}F_{3/2}$, but in many other manifolds.

Based on the experimental energy levels for C_2 center given in Table 2, a crystal field calculation was performed considering the local symmetry to be D_{3h} . The crystal field potential corresponding to D_{3h} group

$$V_{D_{3h}} = \sum_{k,q} B_q^k V_q^k$$

contains only four terms, with (k=2,4,6, q=0) and (k=6, q=6). The best fit crystal field parameters are given in Table 3, and differ significantly from those given in [6]. The calculated Stark levels and their irreducible representations (I. R.) are given in Table 2. The fitting is rather good with a mean deviation of 10.5 cm⁻¹ for 65 levels, the irreducible representations determined experimentally (Fig. 4) are reproduced. The estimated parameters are different from those given in Ref. [6].

Table 2. Experimental and calculated energy levels of C	2
center in ASL $x=y=0.05$, for a D_{3h} local group.	

$^{2S+1}L_J$	E (cm ⁻¹)		I. R.	2S+1T	E (cm ⁻¹)		I. R.
	Exp.	Theor. D _{3h}	D _{3h}	LJ	Exp.	Theor. D _{3h}	D _{3h}
	0	-8	Γ_8		(13520)	13538	Γ_8
	110	138	Γ_7	${}^{4}F_{7/2}+{}^{4}S_{3/2}$	13567	13573	Γ_7
4 T	155	152	Γ_9		13714	13720	Γ_9
19/2	480	482	Γ_9		13734	13742	Γ_7
	530	529	Γ_8		13740 (13803)	13750 13794	Γ_9 Γ_8
	(2069)	2059	Γ_7				- 0
	2073	2063	Γ ₀		14868	14872	Γ_7
41	(2174)	2167	Γ_7	4	14893	14902	Γ_{9}
$1_{11/2}$	(2208)	2209	Γ ₉	⁻ F _{9/2}	(14940)	14941	Γ_8
	2235	2236	Γ_8		(14952)	14958	Γ_8
	2281	2277	Γ_8	-	15015	14986	Γ_9
	(3990)	3986	Γ_7		16036	16033	Γ_7
	(4084)	4085	Γ_7	² H _{11/2}	16040	16046	Г9
	4105	4105	Γ_9		(16075)	16062	Γ_8
${}^{4}I_{13/2}$	(4151)	4153	Γ_7		16092	16102	Γ_9
	4185	4187	Γ_8		16110	16107	Γ_7
	4266	4266	Γ_9		(16176)	16168	Γ_8
	4377	4384	Γ_8				
	11606	11592	Г	${}^{4}G_{5/2} + {}^{2}G_{7/2}$	17298	17305	Γ_9
⁴ E	11000	11365	17		-	17324	Γ_8
1'3/2	11654	11651	Г		17342	3567 13573 Γ_7 3714 13720 Γ_9 3734 13742 Γ_7 3740 13750 Γ_9 3803) 13794 Γ_8 4868 14872 Γ_7 4893 14902 Γ_9 4940) 14941 Γ_8 4952) 14958 Γ_8 5015 14986 Γ_9 6036 16033 Γ_7 6040 16046 Γ_9 6075) 16062 Γ_8 6092 16102 Γ_9 6110 16107 Γ_7 16176) 16168 Γ_8 7298 17305 Γ_9 - 17324 Γ_8 7342 17368 Γ_7 7557) 17555 Γ_8 7575) 17578 Γ_8 23427 23422 Γ_7	
	11054	11031	19		17465	17490	Γ_9
${}^{4}F_{5/2}+{}^{2}H_{9/2}$	(12600)	12610	Γ_8		17538	17554	Γ_7
	12639	12635	Γ_7		(17557)	17555	Γ_8
	12648	12644	Γ_9		(17575)	17578	Γ_{\circ}
	12689	12668	Γ_9		(11515)	11510	18
	12703	12705	Γ_8	${}^{2}P_{1/2}$	23427	23422	
	12845	12861	Γ_7				Г.
	-	12880	Γ ₉				• /
	(12972)	12990	Γ_8				

Doromotor	Value (cm ⁻¹)	
1 draineter	D_{3h}	
B_{0}^{2}	516.6	
B_0^4	464.8	
B_{0}^{6}	-1611	
B_6^6	1145	
Mean deviation	10.5 for 65 levels.	

Table 3.	. The estimated crystal field parameters for $\mathit{Nd}^{^{3+}}$ (C_2
	center in ASN ($x=0.05$) assuming D_{3h} .	

The data show that the lowering in symmetry in the case of C_2 center, due to the Mg^{2+} charge compensation is small, as the polarization data that satisfy the selection rules of D_{3h} symmetry and the crystal field calculation show.

The polarization data for C_1 center (prevailing in the sample x=0.5) do not follow the selection rules for D_{3h} local symmetry. This fact can be connected to the strong cationic disorder effects leading to a lowering in local symmetry.

4. Conclusions

There were analyzed the crystal field levels and polarization data focused mainly on one of the main Nd^{3+} centers in ASL ($Sr_{1-x}Nd_yLa_{x-y}Mg_xAl_{12-x}O_{19}$), C_2 - prevailing at low x parameters, were analyzed. The polarization data suggest that the local symmetry for this center is very close to D_{3h} . The crystal field analysis based on an experimental energy level scheme for C_2 center sustains this supposition.

References

- G. Aka, E. Reino, D. Vivien, F. Balembois, P. Georges, B. Ferrand, OSA Trends in Optics and Photonics 68, 329 (2002).
- [2] S. Alablanche, R. Collongues, M. Leduc,
 A. Minvielle, J. Thery, D. Vivien, J. de Phys. IV, 1, C7-275 (1991).
- [3] S. Alablanche, A. Kahn-Harari, J. Thery, B. Viana, D. Vivien, J. Dexpert-Ghys, M. Faucher, J. Solid State Chem. 98, 105 (1992).
- [4] V. Delacarte, J. Thery, J. M. Benitez, D. Vivien, C. Borel, R. Templier, C. Wyon, OSA Proc. Adv. Solid State Lasers 24, 123, (1995).
- [5] V. Delacarte, J. Thery, D. Vivien, J. Luminescence 62, 237, (1994).
- [6] H. R. Verdun, D. E. Wortman, C. A. Morrison, J. L. Bradshaw, Optical Materials 7, 117 (1997).
- [7] D. Vivien, G. Aka, A. Lupei, V. Lupei, C. Gheorghe, Proc. SPIE, vol. 5581, 287 (2004).
- [8] A. Lupei, V. Lupei, C. Gheorghe, D. Vivien, G. Aka, P. Aschehoug, J. Appl. Phys. 96(6), 3057, (2004).
- [9] A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, D. Vivien, G. Aka, Phys. Stat. Sol (c) 2(1), 276 (2005).
- [10] G. Aka, D. Vivien, V. Lupei, Appl. Phys. Lett. 85, 2685 (2004).
- [11] G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz, Properties of the thirty-two point groups (MIT 1963).
- [12] S. Hufner, Optical Spectra of Transparent Rare earth Compounds, (Academic Press, 1978).
- [13] A. Abragam, B. Bleaney, Electron Paramagnetic resonance of Transition Ions (Clarendon Press, Oxford 1970).
- [14] O. Guillot-Noel, Ph. Goldner, P. Higel, D. Gourier, Chem. Phys. Lett. 380, 563 (2003).

*Corresponding author: vlupei@pluto.infim.ro