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The fiber drop fingerprint (FDF) results from the light signal variation inside the liquid drop during drop formation and it can be 
used for liquid identification. Normalization is a necessary prior step before extracting features from FDF and constructing the 
liquid database. The processing method and algorithm for normalizing FDF is introduced in this paper. Start and end 
positions of each drop are determined through extremum method and threshold detection, based on excellent linearity of the 
capacitive signals. Normalized fiber and capacitive data in each normalized interval are obtained by using linear interpolation. 
Multiple drop signals corresponding to the same normalization position are averaged to get the final fingerprint. The 
mathematical deduction will be discussed in detail. Some graphic experimental results are presented. 
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1. Introduction 
 

 The optoelectronic drop analyzer (OEDA) is a new 

instrument that has been developed on the principles of 
fiber, capacitive and image drop analysis [1]. Fig. 1 is the 
schematic diagram of OEDA. The tested liquid is slowly 
delivered by the software-controlled micro-flow feeding 
pump and shaped into a satiated and uniform drop after 
being pumped into the drop head. The modulated infrared 

light is injected into the liquid drop by a source fiber 
positioned in the drop head and is collected by a detector 
fiber on the opposite side after various reflection, 
refraction and absorption of the optical signal inside the 
drop. The coupled light intensity changes along with the 
drop growing and produces a curve named fiber drop 

fingerprint (FDF) [2]. 
In addition, the specially designed capacitive sensor 

uses the drop head as one of its plate and a cylindrical ring 
plate, which surrounds the drop head and the space 
occupied by the formed drop, as another. The drop, which 
can be seen either as an extension of the drop head plate if 

the l iquid is highly conductive, or as a dielectric material i f 
it is less conductive, changes the capacitance along with 
drop growth. The instant drop volume can be obtained 
through a simplified mathematics model [3]. 

The CCD image processing provides another choice 
for drop volume measurement and drop growth monitoring, 
by making direct records of the instantaneous drop shape 
during its formation based on real-time image acquisition 

and image storage. The drop volume can be determined 
using a Soble or Laplacian edge detection method and 
image processing technology [4]. 

By merging the fiber signal and the capacitive signal 
or equivalent drop volume signal, a volume-based fiber 
drop fingerprint (VFDF) can be constructed [5], which 

shows the variation regularity of the light signal passing 
through the liquid drop during the drop growth. The VFDF 
uses the equivalent drop volume as the horizontal axis, 
instead of time series. The new representation of VFDF 
makes the time-based FDF independent from the speed of 
drop growth and the volatility of liquid, and accordingly 

ensures the repeatability of measurement against the 
variation of the feeding speed of the pump. In this paper, 
FDF refers to VFDF directly. 

Large quantities of experiments for different samples 
[6] prove that the FDF provides a very fruitful source of 
information on the bulk properties of the tested liquids, 

and it is unique and definite for a certain liquid under 
certain conditions. So FDF is favorable for fine 
discrimination among different l iquids. 
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Fig. 1. The principle of the optoelectronic drop analyzer 

(OEDA). 

 

Although visual features and qualitative differences 
can be observed in FDFs of different liquids, the method 
for constructing the l iquid database and for extracting 
features from FDF should be studied, in order to quantitate 
fine discrimination and measurement of l iquid properties. 
Original captured data of different tested liquids should be 
normalized to be with the same data format and data 
length, and also to represent the multiple measuring results 
and to reflect the characteristics of FDF clearly. FDFs of 
different l iquids are comparable after normalization and 
suitable for feature extraction. It is the purpose of this 
paper to introduce the normalization method and algorithm 
of FDF in detail.  

 
 
2. Normalization method and algorithm 
 
The aim of normalization is to process the original 

measured data containing multiple drops into “one drop”. 
So the fingerprints after normalization reflect the signal 
variation during one drop period. There are three steps. 
Firstly, start and end positions of each drop are determined 
through extremum method and threshold detection, based 
on excellent linearity of the capacitive signals. Secondly, 
normalized fiber and capacitive data in each normalized 
interval are obtained by using l inear interpolation. Thirdly, 
multiple drop signals corresponding to the same 
normalization position are averaged to get the final 
fingerprint. 

 
 
2.1 Detection for the drop separation points 
 
The fiber curve )(Nf  produced by the original l ight 

intensity signal according to the data acquisition system is 
shown in Fig. 2(a), which includes several continuous 
drops from “drop 1” to “drop 5”. This is time-based fiber 
drop fingerprint as mentioned in introduction. The 
simultaneously obtained capacitor curve )(Nc  is proved 

to be excellently linear, as shown in Fig. 2(b). The 
volume-based fiber drop fingerprint is shown in Fig. 2(c), 
by merging the fiber signal and the capacitor signal. 
 

 
 

 

 

Fig. 2. The experimental graphs of pure water obtained 

from the drop analyzer. (a) The fiber drop sensor signal  

(the  time-based fiber drop fingerprint); (b) The 

capacitor drop sensor signal; (c) The volume-based fiber  

                   drop fingerprint. 

 

The first step of normalization is to determine 
separation points between multiple drops according to the 
linearity of the capacitor signal. In other words, the start 
positions ( ][min iNum ) and end positions ( ][max iNum ) of 
each drop are decided based on extremum method, and the 
number of the l iquid drops ( nDrops ) is also got. 

Extremum method is relatively simple in theory. From 
the second datum to the converse second datum in time 
series, those data bigger than their adjacent preceding and 
posterior data can be defined as maximum and those 
smaller can be defined as minimum. There are two 
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problems: one is that neglecting the first and the last data 
means possibly neglecting the first drop (if the first datum 
is minimum) and the last drop (if the last datum is 
maximum) in the measurement. Generally a certain 
algorithm can be used to estimate the first and last data in 
strict data analysis. But the liquid drop fingerprint as a 
special curve, is an overlapping result of multiple drops in 
a measurement cycle and a repetitive result of multiple 
measurements for a certain liquid. So it is unnecessary to 
put emphasis on a single drop, so as to simplify the 
program. Another problem is that the capacitor signal 
should be strictly increasing. However in fact there are 
some abnormal data and the capacitor curve appears to be 
slightly fluctuating in linearly increasing trend as a whole. 
Threshold detection provides a choice to solve this 
problem. Firstly, the biggest ( Datamax ) and the smallest 
voltage value ( Datamin ) are found out. Afterwards the 
threshold coefficient α  is specified (usually %5=α ) 
and the threshold voltage for maximum ( maxV∆ ) and for 
minimum ( minV∆ ) can be achieved, as shown in Fig. 3(a). 
Accordingly, those data falling outside the voltage 
threshold line cannot be decided as extremum. In brief the 
first decision rule is that the maximum should be enough 
close to the biggest and the minimum enough close to the 
smallest, as can be expressed in the following mathematic 
formula: 

α×=∆<− DataViNumcData max])[max(max max   (1) 

α×=∆<− DataVDataiNumc minmin])[min( min    (2) 

As for those data which falls inside the voltage 

threshold line but are not extremum, the time threshold 

line is employed. The second decision rule is that every 

extremum should be enough far from preceding extremum 
as the following mathematic representation: 

max]1[max][max NiNumiNum ∆>−−         (3) 

min]1[min][min NiNumiNum ∆>−−         (4) 

It is worth noting that the minimum positions are 
searched in a sequential order among the original data 
array, while the maximum positions in an inverse order so 
that the formula (3) is effective. 

Now take an example for minimum. Referring to Fig. 
3(b), the first decision rule excludes the possibility of 
those abnormal data in area “B” to be minimum and the 
second rule excludes those in area “A”. In order not to 
miss any abnormal data, area “A” and area “B” should be 
contiguous, as shown in instance (I) of Fig. 3(b), or should 
be intersectional, as shown in instance (II) of Fig. 3(b). 
Otherwise there will be a missing area as shown in 
instance (III) of Fig. 3(b). In this case, abnormal data in 

the missing area meet both the first and second decision 
rules but they are not minimum. So the threshold value of 
time series for minimum ( minN∆ ) should be at lest greater 
than minTN∆  in instance (I). The same principle is suitable 
for maximum, as shown in Fig. 3(c). The above process 
can be expressed as: 

TSmaxTmax minmax

max
L

DataData

Data
NN ×

−
×

=∆≥∆
α       (5) 

TSminTmin minmax

min
L

DataData

Data
NN ×

−
×

=∆≥∆
α       (6) 

where TSL  is the time series length of a single drop. 

 

 
 

 
 

 
 

Fig. 3. Detection for the drop separation points between 

multiple drops according to the capacitor signal. (a) 

Extremum seeking and voltage threshold method; (b) 

Localization of time threshold line for  minimum  

seeking; (c)  Localization of time  threshold line  for  

                  maximum seeking. 
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2.2 Calculation of the normalized fiber and 
   capacitor values in each drop 
 
After extremum-seeking process is finished, the 

normalization region for each drop can be got according to 
various forms of original capacitor signal. As has 

mentioned above, the maximum positions are searched in 
an inverse order among original data, which means 

]5[maxNum  shown in Fig. 3(a) is actually ]0[maNum  in 

extremum seeking process, and ]0[maNum shown in Fig. 

3(a) is actually ]5[maxNum . Now the elements in 

maximum data array are inverted as the same order in Fig. 
3(a), so as to be convenient for representation in the 

following formulae. Suppose that the number of elements 
in maximum data array is nMax , and then as for instance 

(I) and (II) of Fig. 4(a), the number of the l iquid drops 
1−= nMaxnDrops  and the normalization region is 

])1[max],[(min +iNumiNum , 1,...1,0 −= nDropsi . As for 

instance (III) and (IV) of Fig. 4(a), the number of the 
liquid drops nMaxnDrops =  and the normalization region 

is ])[max],[(min iNumiNum , 1,...1,0 −= nDropsi . The 

following formulae is directly applicable for instance (I) 
and (II). Instance (III) and (IV) are in the same principle. 

The second step of normalization is to preset the 
number of normalization points ( NP ) and to evenly divide 

each drop into NP  parts in time series, as shown in Fig. 
4(b). Of course NP  is usually not equal to the number of 

original measurement points in each drop, but maybe the 

positions of some normalization points are coincident with 
the positions of measurement points. After that, a linear 

interpolation is used to calculate the normalized fiber 
values and capacitor values at all positions of 

normalization points for each drop, according to the 

original data at the measurement positions adjacent to each 

normalization position. Adjacent points here means the 

measurement points preceding and posterior to the 
normalization point after comparing a normalization point 

with measurement points in time series. 
In every normalization region of 

])1[max],[(min +iNumiNum , the normalization unit ( ][iunit ) 

is firstly calculated: 

1

][min]1[max
][

−
−+=

NP

iNumiNum
iunit , 1,...1,0 −= nDropsi .                 

(7) 

Consequently the positions of normalization points 
( ]][[ jiNorPos ) can be got: 

jiunitiNumjiNorPos ×+= ][][min]][[ , 1,...1,0 −= NPj ; 

 1,...1,0 −= nDropsi .          (8) 

Then the l inear interpolation is used in the 

measurement region where the normalization points fall, 
as shown in Fig. 4(c). When 1]][[ +≤≤ MjiNorPosM , 

])1[max],[min( +∈ iNumiNumM , then there will be the 

following relation in the region of )1,( +MM : 

)()1(

])][[()1(

)()1(

])][[()1(

)()1(

])][[()1(

McMc

jiNorPoscMc

MM

jiNorPosM

MfMf

jiNorPosfMf

−+
−+

=
−+

−+
=

−+
−+

         (9) 

So the normalized fiber values and capacitor values at 
the position ]][[ jiNorPos  are expressed as: 

)()1(

]][[1
)1(]][[(

MfMf

jiNorPosM
MfjiNorPosf

−+
−+−+=   (10) 

)()1(

]][[1
)1(]][[(

McMc

jiNorPosM
McjiNorPosc

−+
−+−+=   (11)  

where 1,...1,0 −= NPj , 1,...1,0 −= nDropsi , M  and 1+M  

are adjacent points mentioned above. 

 

 

 

 

Fig. 4. Calculation of the normalized fiber and capacitor 

values. (a) Four forms of the original capacitor signal; 

(b) Divide  each  drop  into NP  parts;  (c) Linear 

                   interpolation. 



Qing Song, Guoxiong Zhang, Zurong Qiu, Jian Xu, Zhongping Fang 

 
380 

2.3 Fiber drop fingerprint constructed from the  
   averaged values of multiple drops 
 
The third and the last step of normalization is to 

average the fiber values and capacitor values of multiple 
drops correspondingly in the same position of 
normalization points, to get the final normalized fiber 
values ( ][ jfibNorMean ) and capacitor values 
( ][ jcapNorMean ), as represented in the following formula: 

 

nDrops

jiNorPosf

jfibNorMean

nDrops

i

� −

==

1

0

])][[(

][ , 1,...1,0 −= NPj                 

(12) 

 

 

nDrops

jiNorPosc

jcapNorMean

nDrops

i

� −

==

1

0

])][[(

][ , 1,...1,0 −= NPj                  

(13) 

 

Fig. 5(a) and 5(b) show the fiber signal and the 

capacitor signal of pure water after normalization, 

when 1000=NP .  

The normalized fiber drop fingerprint (FDF) can be 

plotted from the normalized fiber and capacitor data, as 

shown in Fig. 5(c). In comparison with the original FDF 

shown in Fig. 2(c), constructed by raw fiber and capacitor 

signals, normalized FDF can represent the multiple 

measuring results. Normalization makes the characteristics 

of FDF more clear and apparent, on the basis of obedience 

to the original data. What’s more, normalization improves 

the smoothness of FDF curve greatly. 

It is worth noting that there is a significant difference 

between Fig. 5(a) and Fig. 5(c). Fig. 5(a) is the light signal 

variation with time series, viz. time-based fiber drop 

fingerprint. It is just the processing result by normalizing 

the original multiple drops shown in Fig. 2(a) into “one 

drop”. Fig. 5(c) is the normalized volume-based fiber drop 

fingerprint, which uses the capacitor signal as the 

horizontal axis. This graph will be used directly for liquid 

identification and property study in the future. 
 

 
 

 
 

 
Fig. 5. Signals of pure water after normalization. (a) The 

fiber  signal;  (b) The capacitor signal; (c) Normalized  

                fiber drop fingerprint. 
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3. Experiments and discussions 
 
Fig. 6 are fiber drop fingerprints of different kinds of 

liquids, including KangShiFu pure water, Coca Cola, 
Beijing ErGuoTou white spirits, LaoChou soy and ShanXi 
mature vinegar. Fig. 6(a) shows their original FDFs and 
Fig. 6(b) shows their normalized FDFs, with the same 
normalization parameter 1000=NP .  

 

 

 

Fig. 6. Comparison of the fiber drop fingerprints of 

different liquids.  (a)  Original FDFs; (b) Normalized  

                     FDFs. 

 
Although normalization improves the smoothness of 

FDF curve, it should not be considered as a process of 
noise filtering or data smoothing. Normalization is 
necessary, because: 

As we know, all processing on the FDF such as 
feature extraction, are essentially operated on the captured 
data, which compose the fingerprints. In fact, the 
representation of volume-based FDF constructs a 
fingerprint in one drop period overlapped by multiple 
drops, only from the aspect of visible graph. But the data 

itself still  involves multiple drops. 
Suppose that the total feeding flow flux is the same 

and the data length for acquisition is the same, and then 
the number of measured drops of different liquids are 
different, because the drop volume of different l iquids are 
different. There are only 5 drops for “ Kangshifu pure 
water”  as shown in Fig. 2(a), while there are 12 drops for 
“Beijing Erguotou white spirits” , as shown in Fig. 7. It is 
obvious that in this case their fingerprint data (including 
fiber and capacitor data) are incomparable, because their 
data corresponding to the same time series reflect different 
hour or position during drop growth. In addition, on 
condition that the total feeding flow flux is different or the 
data length for acquisition is different when measuring 
different liquids, their fingerprint data are also 
incomparable. Therefore it is infeasible to extract features 
from the original captured data and it is quite necessary to 
normalize the fingerprints. 

 

 

 
Fig. 7. The experimental graphs of Beijing Erguotou 

white spirits. (a) The  fiber  signal;  (b) The capacitor  

                      signal. 

 
Fig. 8(a) and 8(b) show the fiber signal and the 

capacitor signal of Beij ing Erguotou white spirits after 
normalization, when 1000=NP . These data is now 
comparable with those of pure water shown in Fig. 5. 

It should be emphasized that NP  must be set the 

same value when compare FDFs of different liquids, 
because only in this case the signal corresponding to the 

same time series is comparable. Its meaning is to evenly 
divide one drop of different liquids into NP parts in drop 

volume, or in time axis if the speed of drop growth is 
uniform, and then we study their signals at the 

corresponding same position. 
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Fig. 8. Signals of Beijing Erguotou white spirits after 
normalization.  (a)  The fiber signal; (b) The capacitor  
                   signal. 

 
4. Conclusions 

 
The fiber drop fingerprint (FDF) can be obtained by 

fiber drop analysis, capacitive drop analysis or image drop 
analysis. FDF reveals the variation regularity of the l ight 
signal passing through the liquid drop during the drop 
growth, and reflects some physical and chemical 
properties of the tested l iquids. It is unique and definite for 
a certain liquid under certain testing conditions, just like 
the fingerprint of a certain person. Therefore FDF can be 
used to discriminate different liquids, for example, to 
distinguish quality goods from counterfeits, such as fake 
beverage, fake medicine and fake wine. 

 
 
 
 
 
 
 
 

Normalization is a necessary prior step before 
constructing the liquid database and for extracting features 
from FDF. Its main purpose is to make FDFs of different 
liquids comparable. The processing method introduced in 
this paper is firstly to determine start and end positions of 
each drop based on excellent linearity of the capacitive 
signals. Secondly normalized fiber and capacitive data in 
each normalized interval are obtained by using linear 
interpolation. Multiple drop signals corresponding to the 
same normalization position are averaged to get the final 
fingerprint. The fingerprints after normalization reflect the 
signal variation during one drop period. The anticipative 
aims are achieved through experimental verifying. 
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