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In this communication we propose a further improvement of the cavity model for microstrip antennas, given by Richards et
al. [1]. The main attention is paid to the calculation of the radiated fields Eq, E4 and to the variation of the input impedance
as a function of the frequency and the feed point. In our model we have suppose that the magnetic walls are not perfect and
the patch acts as a cavity with the length corresponding to its resonance frequency. The validity of the proposed model was
proved by comparison of theoretical computations and experimental resullts.
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1. Introduction

During the design procedure of patch antennas there
are two important features: the calculation of the radiation
pattern for a single patch and for an array; determination
of the input impedance that can assure a good matching of
the feed line with the patch. In this aspect were proposed
many models. In this communication we deal mainly with
the improved cavity model given by W. F. Richards et al.
[1], which is related to the classica cavity model
developed by Y. T. Lo et d. [2]. Besides these models
other approaches are known in the literature; among these
we can mention: the vector potential approach [3], the
dyadic Green’s function model [4], the wire grid model
[5], and the transmission line modd [6,7].

2. General relations for the classical cavity
model

The “Classica Cavity Modd” [2] is based on the
following considerations:
a) The close proximity between the microstrip patch and

the ground plane suggest that E has only z component

and H has only xy-componentsin the region bounded by

the microstrip and ground plane.

b) The fields are independent of the z-coordinate for al

frequencies of interest.

c) The dectric current in the microstrip must have no
component norma to the edge at any point on the edge,
implying a negligible tangent component of the H along
the edge.

Thus the region between the patch and ground plane
may be treated as a cavity bounded by electric walls above
and bd ow, and magnetic walls along the edges. The fields
insde the antenna are assumed to be the fields inside of
this cavity.

In Fig. 1 we present a rectangular patch of width a
and length b over aground plane with adielectric substrate
of thickness h and the relative permittivity &. Inside this
cavity the z-directed dectric field satisfy the equation

(DZ + kr%np) E, = joudez @
where 02 is the laplacian and J, is the excitation current.
The solution of the homogeneous wave equation for
TMunp Mmode is given by [8]:

E, = Eg cos(kyx) cos(kny) cos(kyz)  (2)

where E, is an amplitude coefficient depending on the
excitation condition; the eigenval ues satisfy the equation

— — 12 2 2
k?nnp = a’%nnpﬂg =km tky + kp ©)

where for anon radiating cavity

km=mn/a, ky=nn/b, kp=pa/h; (4
€is the pemittivity of the substrate and pits
permesbility.

Tacking into account the small thickness of the
substrate, p must be zero for usualy frequencies and in
this case E,, E, ae zero and the magnetic fields
components are;

jowe

Hy == kn Eg cos( kyx) sin(k,y) cos(kpz)
mnp
©®)
joe .
Hy = kmEg sin( kmx) cos(kny) cos(kpz)

L2
I(mnp
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Fig. 1. The representation of radiating currents.

The cavity model assumes that the field structure in
the patch antenna is essentially the same as that in the
cavity. With those fields we caculate the currents
generéted by the field E,, on the sde walls:

X=Egcog(nzy/b)y  for x=0and x=a (6)

Jmx = E;z2x ¥ = tEqcoq mzx / a) X

Jmy = Ejzx
for y=0and b

where X, ¥, Z are unity vectors.

In this model only the dectric fields generates
radiating currents because the magnetic fields are zero at
thelateral walls.

For the oscillation mode TM g the currents Jy,, on the
walls, x=0 and x=a, are radiating only; the other two Jn
currents on thewalls y=0 and y=b are nonradiating.

The input conductance is give by the following
relation [2]

R+HR

VP

where P is the radiated power, Py is the power lost in
dielectric, and V is the voltage at the feeding point.

G= )

3. Further improvements of the cavity model

For the red case of a patch excited by a coaxia feed
line the fidd is a superposition of al TM,,, modes and
therefore the z-directed electric field will be

Ez(va) :ZZArm Em(Xx,y) (8)

m n
where A, are the mode amplitude coefficient and &,
are the zdirected orthonormaized eectric field mode

vectors. For the elementary case of a nonradiating cavity
with perfect open-circuits walls, we have [9]

em(X,Y) = \/’%cos(kmx)cos(kny) ©)

with
1, m=0 and n=0
fmn =1 ~N2 m=0 or n=0
2 mz0 and n#0

If the excitation current Jy is a z-directed current probe Io
of small rectangular cross-section (d,, dy) at the point (X,
Yo) and zero el sewhere the mode amplitude coefficient is

h  Kim
Amn = | Oﬂ W G mn €08 kmXo ) cos(Kn Yo ) (10)
mn
where
sinmad, / 2a) _sin{nady / 2b)
mrd, / 2a nrdy, / 2b

Gm =

kis the wave number and Ky, is the ko, for p=0.

The factor Gy, accounts for the width of the feed, (dx,
dy) which, for a coaxid line feeding is five times greater
than the physical dimension of the excitation cable [1].
Substituting (10) into (9) we obtain

X,
E, = J|oZokz Z\an( )2/)\|/m2n(xo yO) Gy (D)
m=0n=0 k I(mn
where Zg = \/u/ e, k = o\/pe and
Zmn
Yo = coskpx cosk,y (12)

Jab

Tacking into account that the voltage at the feed point
is Vin = —“hE;(Xg.Yo) Richards et a. [1] proposed for
the input i mpedance the relation

Z' :J:_]ZOkhi Z\Vr‘m(xo yO) rm (13)

m=0n=0 rm

But according (13) with k real the impedance would be
purdy imaginary, and that is in contradiction with
experiment. To solve this problem Richards et a. lump al
losses into a single “effective didectric loss” with
effective tangent loss d«. In this case the wavenumber k
would be replaced by an effective wavenumber

+ = Jer(1— [Ogif )Kg. In an ided cavity &1/Q,

where Q isthe quality factor, therefore
Seff = R /(20W;) (14)

where P=P+ P4+ P, are the totd losses, P; is the power
lost by radiation, Py is the power lost in dielectric, Py, the
power lost in metallic walls and W; is the time-averaged
electric energy stored by cavity. The tota radiated power
is[5]:

zl22x

/
=Re | [[ExA"-E xHA5)r2snodpde (19)
0 0

Besides these improvements we have tried to further
develop the cavity model. One of the most important
drawback of the cavity model was the fact that first it
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suppose the cavity perfect, and cdculate the fields inside
it, and then with this fields we calculate the radiation
currents at the sides walls. In our model we have suppose
that the fields extend outside the cavity, that the magnetic
walls are not perfect and the magnetic field amplitude
along the x axis has the variation asin Fig. 2. The resonant
frequency of a patch with the length a is the same that of a
cavity with the length a+ 2dl, where [8]

eerr +03) (b7 h+0264)
[eetr —0.258)(b/ h+0.8)
is the dielectric permittivity for a microstrip,

d =0.412h

(16)

and Eeff
considered as atransmission line.

a+2dl

d a+dl
Fig. 2. The representation of the magnetic field H, along x axis.

For this reason we may assume that the fields are
extending outside the patch on a distance dl, and the patch
act as a cavity with the length a+2dl. In this case, if we
assume mode TMjy for which (in the frame of this
assumption), thefields are:

E, = Eocos(nxl(a"' 2d|))
17)
Hy = %aEO sin(nx/(a+ 2d|))

and the length of the patch would be taken between dl and
a+dl. Now it is obvious that the magnetic field is zero at
the coordinate 0 and a+2dl but it would not be zero a the
ends of the patch: dl and a+dl. This meansthat besides the
magnetic currents generated by E, a the borders there
would be aso electric currents J generated by Hy. In this
approximation we calculate the currents on the side walls:

J %3( for y=0and y=b (189

jmy=EziX>?=E00°ST;d§’ for x =dl and x = a+dl (18b)
2 s ~ . ondl

=XxH,y=FH for x =dl =a+d (18
J, =%xH,¥ oSin +2dIZ orx=dland x =a+dl (18¢)

and after the rotation of the radiating spertures in a
position paralel to the ground plane the relation (18c)
become:

ndl
a+2d

J, =Hysin z forx=dandx =a+dl

(18d)

Now we suppose that the cavity radiate as four
magnetic currents, and two electric currents situated above
the ground plane. The J. currents could be each
decomposed as two equal magnetic currents oriented in
opposite directions, and so their total radiated field would
be zero. The radiation pattern of a patch situated over a
large ground plane may be calculated by modeling the
radiator as two parallel uniform magnetic line sources of
length b and width h separated by distance a, and two
uniform electric sources of length h and width b, separated
by the same distance a. For an aperture containing both
€lectric and magnetic currents, the radiated fields are [10]:

193,604 Nas-

Eq =€l (19)

-LE (180360 Vds
T

i—k [[60D,elk Mds-
E,=eIkn| *TT A (20)
—%jj(pljle('ko “ds

we obtain:
H hb/2 i i

Eq = exp(=jkonE, [ | elikoysnosing ws[M]dydh cos -
g 0-b/2 2

(21)

) hbl2 -
——]0::0 exp(-j kor)Hyj je(l koysinbsine) 00{7] koas'gecowjdydhcose cos ¢
0-b/2

ik hbl2 . inosi jkpasinfcos
By = -1 ep(-j kor)E, Cf jeUkoys'nes'nmco{'koiz““]dydhsinwcose—
T
0-b/2

A hbi2 .
_ Jong exp(—jkor)Hyj '[e(lkoys'nes'm”)cos{ilkoasgecosﬂdydhgm

i 0-b/2
(22)

In the equations (21) and (22) the two cosines terms
under the integration represent the array factor for the two
magnetic currents, kg is the wave number in free space and
we also have take account of the ground plane. After
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solving the integrals we obtain the radiating fields. From
these rel ations we can determine the radiated fields until a
constant E, that depend of the excitation.
In our case the power dissipated in dielectric Pyis[11]
a+dl bh o
Py =d0e | [[ECEV (23)
d 00

and losses in the electric conducting walls Py, is defined by
therelation

oy a+dl b -
szzfg [ [HOHts (24)
dl 0
where oisthe dielectric | oss tangent and ois the electrical

conductivity. The time-averaged e ectric energy stored by
cavity is[12]

a+dl bh
W, =(e/4) [ [[EETv (25)
d 00

Introducing (22), (23), (24) and (25) in (21) we
compute dy and then introducing Ker in (13) we obtain

. o o 2
Zin = J(Dl/lohc2 Z Z Ymn( X0, Yo) G =
i -
Er m=0 n=0®%nn = (1- jOes )032

=Yy L (26)
m=0n-0j®Cyn — ] +
m Lmn Rmn

where @y = CKyyy / \/; c is the speed of light,
VR m= sl Oren, L= annn‘dmzv Con=l

2

Yim (%0, Y0 )G : Rem represent the
r
real part of the impedance, Ly istheinductance and Coy, iS
the capacity at the feed point.

Because al microstrip antennas are narrow-band and
they work on one of the cavity mode the Ryn(c) can be
simply approximated by Rmy(wm) where wy, is the
resonant pulsation of the TM,, mode. This means that the
summation in (26) would disappear and would remain
only the m and n corresponding to the oscillation mode of
the cavity. The input impedance will be

1 1 1
Zim - Rm ¥ X @)
where:
MohCz 2
Rm = —————¥m(%0:Y0)Gm (28)
€r OpmOeff
hc?
Xmn = to \V%nn(xo’yo )Gmn (29)

2
er(© “/ om) = omn

For the TM 100 mode excitation we can easily neglect the
other modes because Ayp and Aqjp ae zero and at this mode
frequency the other modes contribution to the impedance
vaue can be neglected.

4. Experimental results

Theoretical computations and measurements were
made for a rectangular pach of dimenson a=2.9 cm,
b=1.93 cm, h=0.1 cm with area permittivity £=2.8 and a
loss tangent approxi mately 0.001. The measurements were
made with a vectoria network andyzer. The patch was fed
a %=1.2 cm and y,=0.965 cm with a 50 Q coaxia line.
The measured impedance has the form Z=R+JX. Putting
the computed impedance in asimilar form we obtain:

2
R = _RmXim (30)
Xfn + Ren
R2,X
X =g o @
Xm * Rm

In Table 1 we present the measured and the computed
real part of the input impedance for the cavity modd [1]
and our model around the resonant frequency for the
TM 100 Mmode.

Table 1.
Frequency | Computed | Computed Measured
MHz impedance | impedance | impedance Q
[1]Q [our model] Q
2970 27.54 28.68 43.64
2975 36.45 38.27 49.57
2980 46.354 49.13 54.801
2985 53.51 57.11 55.45
2990 53.34 56.93 53.432
2995 46 48.8 49.145
3000 36.26 38 43.252

It can be seen that around the resonant frequency, that
we found 2985 MHz, both models have an excellent
concordance with the experiment. It can be also seen that
if we chose a frequency far from the resonance the
concordance is no longer as good, but remember that in
relation (28) we supposed that a= ayy,, and is normal tha
the model works well only around the resonance. Anyway
this peculiarity has little practical importance because the
patches are very narrow band antennas and they radiate
only at resonant frequencies.

For the same patch, using relations (21) and (22), we
have presented in Fig. 3 the computed and the measured
rediation patternsfor ¢ = 0° and ¢ = 90° planes.
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Fig. 3. Radiation pattern for a 3 GHzantenna: a- ¢= 0°
plane; b- ¢ = 90 °plane.

We have aso compared the results obtained with the
cavity model [1] and our mode with the experimental
results published in other articles.

In Fig. 4 we present the results for a patch with the
following dimensions. a = 7.62 cm, b = 11.43 cm,
h = 15875 mm, and relaive dieectric permittivity
&§=2.62[1].
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Fig. 4. Impedance dependence with the feeding point for
a 1.187 GHz patch.

In Fig. 5 are presented the results for a patch with
a=4.04cm, b=594, h=127mm, &=242,[13].
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Fig. 5. Impedance dependence with the feeding point for
a 2.3 GHz patch.
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In Fig. 6 we present the results for a patch with:
a=1143cm, b=7,62 cm, h =1.5875 mm, and di€lectric
permittivity &= 2.62 [1].
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Fig. 6. Impedance dependence with the feeding point for
a 803 MHz patch.

5. Conclusions

Rediation of patch antennas is efficient only when the
excitation is made at the resonant frequency of a mode.
The field is usualy dominated by that single mode in the
frequency range of interest. Thus the radiation pattern and
the input impedance can be determined and they are in
good correlation with experiment. It can be seen from
Fig. 3 that our model gives better results for the radiation
pattern of a patch antenna, mainly in the ¢=0° plane. From
Table 1 we can see that our model gives better resultsin 6
cases and worst in 1 case. From Fig. 4, 5 and 6 we can see
that our model describes better the dependence of the
impedance with the feeding points compared with the
improved cavity model developed by Richards et al.
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