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In this communication we propose a further improvement of the cavity model for microstrip antennas, given by Richards et 
al. [1]. The main attention is paid to the calculation of the radiated fields Eθ, Eϕ and to the variation of the input impedance 
as a function of the frequency and the feed point. In our model we have suppose that the magnetic walls are not perfect and 
the patch acts as a cavity with the length corresponding to its resonance frequency.  The validity of the proposed model was 
proved by comparison of theoretical computations and experimental results. 
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1. Introduction  
 
During the design procedure of patch antennas there 

are two important features: the calculation of the radiation 
pattern for a single patch and for an array; determination 
of the input impedance that can assure a good matching of 
the feed line with the patch. In this aspect were proposed 
many models. In this communication we deal mainly with 
the improved cavity model given by W. F. Richards et al. 
[1], which is related to the classical cavity model 
developed by Y. T. Lo et al. [2]. Besides these models 
other approaches are known in the li terature; among these 
we can mention: the vector potential approach [3], the 
dyadic Green’s function model [4], the wire grid model 
[5], and the transmission line model [6,7].      
 
 

2. General relations for the classical cavity 
    model 
 
The “Classical Cavity Model”  [2] is based on the 

following considerations: 
a) The close proximity between the microstrip patch and 

the ground plane suggest that E
�

 has only z component 

and H
�

 has only xy-components in the region bounded by 
the microstrip and ground plane. 
b) The fields are independent of the z-coordinate for all 
frequencies of interest. 
c) The electric current in the microstrip must have no 
component normal to the edge at any point on the edge, 

implying a negligible tangent component of the H
�

along 
the edge. 

Thus the region between the patch and ground plane 
may be treated as a cavity bounded by electric walls above 
and below, and magnetic walls along the edges. The fields 
inside the antenna are assumed to be the fields inside of 
this cavity.  

In Fig. 1 we present a rectangular patch of width a 
and length b over a ground plane with a dielectric substrate 
of thickness h and the relative permittivity εr. Inside this 
cavity the z-directed electric field satisfy the equation 

     

 ( ) zJjEk ezmnp ˆ��=+∇ 22    (1) 

where 2∇ is the laplacian and Je is the excitation current. 
The solution of the homogeneous wave equation for 
TMmnp mode is given by [8]: 
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where E0 is an amplitude coefficient depending on the 
excitation condition; the eigenvalues satisfy the equation 
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where for a non radiating cavity 
 

amkm /
= , bnkn /�= , hpkp /�= ;    (4)  

 is the permittivity of the substrate and � its 

permeability. 
Tacking into account the small thickness of the 

substrate, p must be zero for usually frequencies and in 
this case Ex, Ey, are zero and the magnetic fields 
components are: 
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Fig. 1. The representation of radiating currents. 

 
The cavity model assumes that the field structure in 

the patch antenna is essentially the same as that in the 
cavity. With those fields we calculate the currents 
generated by the field Ez, on the side walls: 
 

axandxforybynExzEJ zym ===×= 00 ˆ)/�cos(ˆˆ
�

   (6) 
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where zyx ˆ,ˆ,ˆ  are unity vectors. 
In this model only the electric fields generates 

radiating currents because the magnetic fields are zero at 
the lateral walls.  

For the oscillation mode TM100 the currents Jmy on the 
walls, x=0 and x=a, are radiating only; the other two Jmx 
currents on the walls y=0 and y=b are nonradiating.  

The input conductance is give by the following 
relation [2] 

2V

PP
G dr +=                  (7) 

 
where Pr  is the radiated power, Pd is the power lost in 
dielectric, and V is the voltage at the feeding point. 

 
 

3. Further improvements of the cavity model 
 
For the real case of a patch excited by a coaxial feed 

line the field is a superposition of all TMmn modes and 
therefore the z-directed electric field wil l be 
 � �

=
m n

mnmnz yxeAyxE ),(),( ��   (8) 

where mnA  are the mode amplitude coefficient and mne�  

are the z-directed orthonormalized electric field mode 
vectors. For the elementary case of a nonradiating cavity 
with perfect open-circuits walls, we have [9] 
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If the excitation current J0 is a z-directed current probe I0 
of small rectangular cross-section (dx, dy) at the point (x0, 
y0) and zero elsewhere the mode amplitude coefficient is 
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k is the wave number and kmn is the kmnp for p=0.  

The factor Gmn accounts for the width of the feed, (dx, 
dy) which, for a coaxial l ine feeding is five times greater 
than the physical dimension of the excitation cable [1]. 
Substituting (10) into (9) we obtain 
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where ��0 /=Z , ���=k  and 
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Tacking into account that the voltage at the feed point 

is ),( 00 yxEhV zin −=  Richards et al. [1] proposed for 
the input impedance the relation 
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But according (13) with k real the impedance would be 
purely imaginary, and that is in contradiction with 
experiment. To solve this problem Richards et al. lump all 
losses into a single “effective dielectric loss”  with 
effective tangent loss δeff. In this case the wavenumber k 
would be replaced by an effective wavenumber 

0
�

1� kjk effreff )( −= . In an ideal cavity δ=1/Q, 

where Q is the quality factor, therefore 
 

)/( cleff WP  2!
=                (14) 

 
where Pl=Pr+Pd+Pm are the total losses, Pr  is the power 
lost by radiation, Pd is the power lost in dielectric, Pm  the 
power lost in metallic walls and Wc is the time-averaged 
electric energy stored by cavity. The total radiated power 
is [5]: 
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 Besides these improvements we have tried to further 
develop the cavity model. One of the most important 
drawback of the cavity model was the fact that first i t 
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suppose the cavity perfect, and calculate the fields inside 
it, and then with this fields we calculate the radiation 
currents at the sides walls. In our model we have suppose 
that the fields extend outside the cavity, that the magnetic 
walls are not perfect and the magnetic field amplitude 
along the x axis has the variation as in Fig. 2. The resonant 
frequency of a patch with the length a is the same that of a 
cavity with the length a+2dl, where [8] 
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and eff
� is the dielectric permittivity for a microstrip, 

considered as a transmission line. 
 

 
Fig. 2. The representation of the magnetic field Hy along x axis. 

 
 

For this reason we may assume that the fields are 
extending outside the patch on a distance dl, and the patch 
act as a cavity with the length a+2dl. In this case, if we 
assume mode TM100 for which (in the frame of this 
assumption), the fields are: 
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and the length of the patch would be taken between dl and 
a+dl. Now it is obvious that the magnetic field is zero at 
the coordinate 0 and a+2dl but it would not be zero at the 
ends of the patch: dl and a+dl. This means that besides the 
magnetic currents generated by Ez at the borders there 
would be also electric currents J generated by Hy. In this 
approximation we calculate the currents on the side walls: 
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and after the rotation of the radiating apertures in a 
position parallel to the ground plane the relation (18c) 
become:   
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Now we suppose that the cavity radiate as four 

magnetic currents, and two electric currents situated above 
the ground plane. The Jmx currents could be each 
decomposed as two equal magnetic currents oriented in 
opposite directions, and so their total radiated field would 
be zero. The radiation pattern of a patch situated over a 
large ground plane may be calculated by modeling the 
radiator as two parallel uniform magnetic line sources of 
length b and width h separated by distance a, and two 
uniform electric sources of length h and width b, separated 
by the same distance a.  For an aperture containing both 
electric and magnetic currents, the radiated fields are [10]: 
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)rôkj(
m

)rkj( �
�

  (20) 

 
we obtain:     
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In the equations (21) and (22) the two cosines terms 
under the integration represent the array factor for the two 
magnetic currents, k0 is the wave number in free space and 
we also have take account of the ground plane. After 
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solving the integrals we obtain the radiating fields. From 
these relations we can determine the radiated fields until  a 
constant E0 that depend of the excitation. 

In our case the power dissipated in dielectric Pd is [11] �����+
∗⋅=

dla

dl

b h

d dvEEP
0 0

��� ��
         (23) 

and losses in the electric conducting walls Pm is defined by 
the relation 
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where δ is the dielectric loss tangent and σ is the electrical 
conductivity. The time-averaged electric energy stored by 
cavity is [12] 
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Introducing (22), (23), (24) and (25) in (21) we 
compute δeff and then introducing keff in (13) we obtain 
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where: rmnmn kc �� /= , c is the speed of light, 

1/Rmn=ωδeff/αmn, Lmn=αnmnωmn
2, Cmn=1/αmn 

and mnmn
r

mn Gyx
ch

),( 00
2

2
0 ��� = ; Rmn represent the 

real part of the impedance, Lmn is the inductance and Cmn is 
the capacity at the feed point. 

Because all microstrip antennas are narrow-band and 
they work on one of the cavity mode the Rmn(ω) can be 
simply approximated by Rmn(ωmn) where ωmn is the 
resonant pulsation of the TMmn mode. This means that the 
summation in (26) would disappear and would remain 
only the m and n corresponding to the oscil lation mode of 
the cavity. The input impedance will be 

mnmnmn jXRZ
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For the TM100 mode excitation we can easily neglect the 
other modes because A010 and A110 are zero and at this mode 
frequency the other modes contribution to the impedance 
value can be neglected. 

 
 

4. Experimental results 
 

Theoretical computations and measurements were 
made for a rectangular patch of dimension a=2.9 cm, 
b=1.93 cm, h=0.1 cm with a real permittivity εr=2.8 and a 
loss tangent approximately 0.001. The measurements were 
made with a vectorial network analyzer. The patch was fed 
at x0=1.2 cm and y0=0.965 cm with a 50 Ω coaxial l ine. 
The measured impedance has the form Z=R+JX. Putting 
the computed impedance in a similar form we obtain: 
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In Table 1 we present the measured and the computed 

real part of the input impedance for the cavity model [1] 
and our model around the resonant frequency for the 
TM100 mode. 
 

Table 1.  
 

Frequency 
MHz 

Computed 
impedance  

[1]Ω 

Computed 
impedance  

[our model] Ω 

Measured 
impedance Ω 

2970 27.54 28.68 43.64 
2975 36.45 38.27 49.57 
2980 46.354 49.13 54.801 
2985 53.51 57.11 55.45 
2990 53.34 56.93 53.432 
2995 46 48.8 49.145 
3000 36.26 38 43.252 

   
 

It can be seen that around the resonant frequency, that 
we found 2985 MHz, both models have an excellent 
concordance with the experiment. It can be also seen that 
if we chose a frequency far from the resonance the 
concordance is no longer as good, but remember that in 
relation (28) we supposed that ω=ωnm,  and is normal that 
the model works well only around the resonance. Anyway 
this peculiarity has little practical importance because the 
patches are very narrow band antennas and they radiate 
only at resonant frequencies.  

For the same patch, using relations (21) and (22), we 
have presented in Fig. 3 the computed and the measured 
radiation patterns for ϕ = 0° and ϕ = 90° planes. 
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Fig. 3. Radiation pattern for a 3 GHz antenna: a- ϕ =  0°  

                        plane; b- ϕ = 90° plane. 
 
 

We have also compared the results obtained with the 
cavity model [1] and our model with the experimental 
results published in other articles. 

In Fig. 4 we present the results for a patch with the 
following dimensions: a = 7.62 cm, b = 11.43 cm,             
h = 1.5875 mm, and relative dielectric permittivity                  
εr = 2.62 [1].  

 
  

 
Fig. 4. Impedance dependence with the feeding point for 

a 1.187 GHz patch. 
 
 

In Fig. 5 are presented the results for a patch with            
a = 4.04 cm, b = 5.94, h = 1.27mm, εr = 2.42, [13]. 

 
Fig. 5. Impedance dependence with the feeding point for  
                                 a 2.3 GHz patch. 
 
In Fig. 6 we present the results for a patch with:              

a = 11,43 cm, b = 7,62 cm, h = 1.5875 mm, and dielectric 
permittivity εr  = 2.62 [1].  

 

 
 
Fig. 6. Impedance dependence with the feeding point for  
                                a 803 MHz patch. 
 

 
5. Conclusions 
 
Radiation of patch antennas is efficient only when the 

excitation is made at the resonant frequency of a mode. 
The field is usually dominated by that single mode in the 
frequency range of interest. Thus the radiation pattern and 
the input impedance can be determined and they are in 
good correlation with experiment. It can be seen from          
Fig. 3 that our model gives better results for the radiation 
pattern of a patch antenna, mainly in the ϕ=00 plane. From 
Table 1 we can see that our model gives better results in 6 
cases and worst in 1 case. From Fig. 4, 5 and 6 we can see 
that our model describes better the dependence of the 
impedance with the feeding points compared with the 
improved cavity model developed by Richards et al.  
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