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Magnetic viscosity phenomena are analyzed in the framework of various models of hysteresis with local history by using the 
Monte Carlo technique. Numerical results related to the decay of the magnetization as of function of time as well as to the 
viscosity coefficient are presented. It is shown that a log t  - type dependence of the average value of the magnetization 
can be qualitatively predicted even in the framework of simplified models of hysteresis, such as the Jiles-Atherton and 
Hodgdon models. These models have only local memory and are computationally much more efficient than models with 
global memory like Preisach-type models. 
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1. Introduction 
 

The state of a magnetic hysteretic system can change 
from higher energy metastable states to lower energy 
metastable states due to thermal energy fluctuations. This 
phenomenon is responsible for the gradual change of 
magnetization over time [1] and is usually referred to as 
magnetic viscosity or aftereffect. While the physical origin 
of viscosity phenomena is well-known, the mathematical 
modeling of these phenomena is difficult since it usually 
requires solving highly nonlinear and history dependent 
stochastic equations. 

There are two different approaches to the analysis of 
viscosity phenomena. The first approach [2,3] is based on 
thermal activation models and is usually applied to 
“noninteracting particle” magnetic systems or bulk 
materials. The second approach is based on the assumption 
that the effect of random thermal agitations is equivalent 
to the effect of a stochastic input superimposed on the 
input variable. This approach is more general since it does 
not require any assumption about the nature of the 
magnetic system. It was first introduced by Neél [1,4] and 
then developed and applied to the Preisach model by 
Mayergoyz et al [5] who established analytical equations 
for the decay of the average value of the output of a 
hysteretic system described by rectangular elementary 
hysteresis loops. Although very powerful, the technique 
developed in [5] can be applied only to hysteresis models 
that are based on superposition of elementary hysteresis 
loops, such as the classical or generalized Preisach models 
of hysteresis [6]. It is practically impossible to find 
analytical equations for the decay of the average value of 
the output variable in systems described by other models 
of hysteresis like the Jiles-Atherton model [7] and the 
Hodgdon model [8]. 

In this paper we analyze for the first time the 
aftereffect phenomena by using the Monte Carlo method. 

This method has the advantage that it is universal in the 
sense that it can be applied to describe viscosity 
phenomena in the framework of any model of hysteresis. 
The article is structured as follows. The basic idea of the 
Monte Carlo approach for the analysis of viscosity in 
magnetic materials is presented in Section II. Numerical 
results are presented and discussed in Section III, which is 
followed by Conclusions. 
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Fig. 1. The initial state of hysteresis is obtained by ac 
demagnetizing the magnetic material and then applying a  
                     magnetic field equal to 0H . 

 
 

2. Monte Carlo technique 
 
Consider the following model of hysteresis:  

 
( ) ( )ˆM t H t= Γ ,                         (1) 
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where ( )M t  is the magnetization, ( )H t  is the total 

magnetic field, and Γ̂  is the hysteresis operator. 
Following the technique presented in [5], we assume that 
the total magnetic field can be written as 

( ) ( )0H t H h t= +  where ( )h t  is a stochastic process 
with zero expected value, which is superimposed on a 
deterministic input 0H . To simplify the problem we 

further suppose that ( )h t  is a discrete-time, i.i.d. random 
variable, and the total applied magnetic field can be 
rewritten as: 
 

0n nH H h= + ,   1, 2, 3,...n =              (2) 
 
where 0nh = . If the probability density function 

( )nhρ  is known, the average value of the magnetization 
can be computed as follows: 

1. First, generate a large number of input processes 
nh . 

2. Then, solve eq. (1) for each input process, nH , to 
compute nM . 

3. Finally, compute nM , the average value of the 
output as function of “time” n .  

 
 
3. Numerical results 
 
The technique described in the previous section has 

been numerically implemented and used to compute the 
dependence of the output of a magnetic system as a 
function of time. The probability distribution function of 
the applied magnetic field is chosen normal with standard 
deviation σ  and mean 0H : 

( ) ( )2
0

2

1 exp
22

H H
Hρ

σπ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

.           (3) 

 
An example of such a randomly generated magnetic 

field is presented in Fig. 2. The initial state of the magnetic 
material is obtained as follows (see Fig. 1). First, the 
sample is demagnetized by using a decreasing alternative 
magnetic field that has a relatively high initial magnitude 
that is slowly decreased to zero. After that, a constant 
magnetic field 0H  is applied and the magnetization is 
measured as a function of time. Unless otherwise 
mentioned, the applied field 0H  is equal to the coercive 
field of the material. 
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Fig. 2 Example of magnetic field generated randomly 
with  normal  distribution  centered  around  the  average  
                              value 0 0.24 /H A m= . 
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                                  (a)                                                             (b)                                                           (c) 

Fig. 3. Gradual change of the magnetization as a function of time computed in the framework of the Jiles-Atherton  
                                     model (a), Hodgdon model (b), and generalized Preisach model (c). 
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Fig. 4. Viscosity coefficient as a function of the mean value of the applied field ( 0H ) computed in the framework of  
                 the Jiles-Atherton model (a), and the Hodgdon model (b), and the generalized Preisach model (c). 

 
Fig. 3 exhibit the change of the magnetization as 

function of time computed by using the Jiles-Atherton [7], 
Hodgdon [8], and generalized Preisach [6] models. In 
these simulation experiments the magnetic susceptibility 
was integrated numerically by using standard quadratures. 
In the case of the Jiles-Atherton model we have used the 
following set of parameters: 41a = , 39k = , 0.85c = , 

510sM = , and 0α = . In the case of the Hodgdon model 

we have used 1α = , 1 0.374A = , -7
2 7.5 10A = × , 

3 -0.769A = , -8
4 4.7 10A = × , 62 10clB = × , and all rate 

dependent parameters of the model were neglected. It is 
remarkable that, although both the Jiles-Atherton and the 
Hodgdon models are a fairly simple models that display 
only local memory, they predicts approximately correctly 
the log t  - dependence of the magnetization, which is in 
good qualitative agreement with the published 
experimental data on magnetic viscosity [10]. It is 
apparent from these simulations that the computational 
burden is somewhat heavier in the case of the Hodgdon 
model than in the case of the Jiles-Atherton model. The 
asymptotic value of the magnetization can be computed by 
using a larger number of Monte Carlo simulations as 
compared to the Jiles-Atherton model. It is also important 
to observe that the Jiles-Atherton and Hodgdon models 
predict results that are in good qualitative agreement with 
those obtained by using the more elaborate generalized 
Preisach model [see Fig. 2(c)]. 

The viscosity coefficient (also known as the 
aftereffect decay coefficient) is defined as: 
 

( )
( )log

d M t
S

d t
=                          (1) 

 
and is plotted in Fig. 4(a)-(c) as a function of applied field 

0H  at which the gradual change in the magnetization is 
observed. These results are in very good agreement with 
the theoretical and experimental results obtained by 
Mayergoyz et al in [9]. The symmetry of the viscosity 
coefficient plots on these figures can be interpreted on the 

basis of the symmetry of the magnetization processes: the 
total magnetization is equal to zero in the a.c. 
demagnetized state and a state with the same absolute 
value of the magnetization should be obtained if we apply 
a positive or a negative magnetic field. 
 
 

4. Conclusions 
 
Monte Carlo simulations provide a powerful tool for 

the analysis of aftereffect phenomena in magnetic 
materials. By using Monte Carlo simulations one can 
compute the gradual change of the magnetization as a 
function of time in the framework of any model of 
hysteresis such as the Jiles-Atherton, Hodgdon, and 
Preisach models, etc. It is shown that a log t  - type 
dependence of the magnetization can be qualitatively 
predicted even in the framework of models with local 
history, which are computationally much more efficient 
than models with global history, such as the Preisach 
model. 
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