
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No. 3, June 2006, p. 978 - 987 
 

Induced residual stresses in the preparation process of 
the glass-covered amorphous magnetic microwires 

 
 

I. ASTEFANOAEI, D. RADU, H. CHIRIACa 

“Al.I. Cuza” University, Faculty of Physics, Carol I Blvd., No. 11, RO-700050, Iasi, Romania 
aNational Institute of Research and Development for Technical Physics, 47 Mangeron Blvd., Iasi 3, Romania 
 
 
In this paper we analyze the internal residual stresses that appear both during the solidification process and during cooling 
to the room temperature for a glass-covered amorphous magnetic microwire made from a Fe B Si -type alloy, maintained at 

a constant temperature, wT . We have proposed an improved theoretical method for calculation of the distribution of the 
internal stresses induced during both the solidification of the metal part and the cooling of the microwire, taking into account 
the difference between the thermal expansion coefficients of metal and glass. Theoretically obtained results are in very 
good agreement with the experimental data. The coupling between the positive magnetostriction and the stresses’ 
distribution leads to an easy axes distribution associated with a magnetic domain structure consisting of a cylindrical inner 
core with axial magnetization (having the radius 94 %cR ≅  out of the metal part’s radius) and a cylindrical outer shell with 
radial magnetization. If, in addition we consider the thermal stresses induced during the cooling process to the room 
temperature, then we found that the theoretical value of the magnetizations’ ratio /r sM M  is very close to the experimental 
one. 
 
(Received March 15, 2006; accepted May 18, 2006) 
 
Keywords: Residual stresses, Glass-covered amorphous microwires, Magnetic materials 
 
 
 

1. Introduction 
 
The aim of this paper is the evaluation of the thermal 

stresses during the solidification and cooling of an 
amorphous glass-covered microwire (AGCM) to the room 
temperature ( 300wT K= ) considering both the thermal 
gradients that appear during the solidification of the 
metallic part and the thermal gradients that exist during the 
cooling of the material to the room temperature; we also 
consider the different thermal behaviour of the two 
materials (metal + glass) in contact. 

In the description of the model presented in this paper 
we distinguish the following important tasks: 

(i) The evaluation of the stresses that appear during 
the solidification process of the metallic part of AGCM; 

(ii) The evaluation of the spatio-temporal distribution 
of the temperature during the forced cooling process to the 
room temperature. In this case we will analyze the spatial 
and temporal evolution of the temperature in the metal-
glass system for different values of the AGCM diameter, 
considering the thermal boundary conditions at the metal-
glass interface; 

(iii) By knowing the spatio-temporal distribution of 
the temperature in AGCM one can obtain the stresses 
which appear both due to the forced cooling  (because of 
the big thermal gradients) and to constraints produced on 
the metallic core by the glass cover as a result of the 

difference between the thermal expansion coefficients of 
the two materials (metal and glass) in contact; 

(iv) The calculation of the total stresses in AGCM and 
final discussions about the magnetic domains structure. 

Table 1 shows the main AGCM characteristics. 
 
 
2. Internal stresses induced in AGCMs 
 
In this section we calculate the internal stresses 

induced in AGCMs due to the solidification and cooling 
processes of the sample, taking into account the difference 
between the thermal expansion coefficients of the two 
materials in contact (metallic core and glass cover). 
AGCMs consist in a cylindrical metallic core with a 

diameter of ( )3 25 mµ÷ , covered by a glass insulation 

with a thickness of ( )2 15 mµ÷  [1].  

Let us consider an AGCM having the length L . We 
assume that the cylindrical metallic core of this AGCM 
has  the radius mR , and that the glass insulation has the 

thickness w mR R− ; here wR  is the total radius of the 
microwire (metal + glass). We associate a cylindrical 
system of coordinates ( , ,  r zθ ) to the sample, having the 
Oz -axis along the microwire’s axis (see Fig. 1). 
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Table 1. The main characteristics of the AGCM. 
 

Characteristic
quantity 

Significance Value 

c  the specific heat of the
metallic core 

530 /  J kg K

1k  the thermal conductibility of
the metal part 

30 /W mK  

2k  the thermal conductibility of
the glass cover 

1.177 /W mK

Mρ  the mass density of the metal 3 37.2 10 /kg m⋅

metalα  metal’s thermal expansion
coefficient  

6 18.7 10 K− −⋅  

glassα  glass’ thermal expansion
coefficient  

6 13.3 10 K− −⋅  

metalE  Young’s modulus of the
metallic core 

11 22 10 /N m⋅

glassE  Young’s modulus of the
glass cover 

11 210 /N m  

 
 

 
Fig. 1. The spatial orientation of the AGCM. mR  is the 

radius   of   the   metallic   core   and   wR    is   the  total  
                                microwire’s radius. 

 
 
2.1. The calculation of the internal stresses induced  
        during the solidification of the metallic core 
 
i) The solidification process of the metallic core  
 
In this section our aim is to analyze the solidification 

process of the metallic core of an AGCM; then, starting 
with the spatio-temporal distribution of the temperature 
during this process, one can determine the internal residual 
stresses induced in the sample. The internal energy of the 
material changes due to the heat losses through 
conduction, and the energy delivery through solidification. 
The samples’ solidification takes place gradually, while 
the solidification front advances from the exterior to the 
interior of the melted material in the radial direction. 
According to the AGCM’s preparation method (the rapid 
quenching from the melt – glass-coated melt spinning 
method) we consider that during its preparation process, 
the exterior surface of the microwire is maintained at a 
constant temperature equal to the room temperature, 

300 wT K= . Let us denote by 1 1( )R R t=  the radius of 
the inner cylinder formed by the unsolidified material at a 

certain moment t , by ( )X t  the “depth” (on the radial 
direction, from the microwire’s surface to its core) where 
the solidification front reached at the moment t , and by 

mR  the radius of the metallic core of the AGCM. 

Obviously, 1( ) ( )mR t R X t= − . The solidification 
process begins at 0t = , when ( 0) 0X t = =  and 

1( 0) mR t R= = . After a time st , the solidification front 
arrives in the metallic core’s center, when the whole mass 
of melted material is solidified. We may write: 

1( ) , ( ) 0 s m sX t t R R t t= = = = . The moment t , when the 
solidification front arrives at the surface of the cylindrical 
shell of radius 1( )r R t=  “shares” the transverse surface of 
the microwire into two distinct zones. The first one 
corresponds to the already solidified material, while the 
second one corresponds to the material unsolidified yet. 
The two zones are connected through the solidification 
front. We consider that the solidification front temperature 
( )1( )r R t=  is 1400mT K=  (the temperature of the 
melted material) and the material to be solidified finally 
reaches the room temperature, Tw = 300 K. The spatio-
temporal distribution of the microwire’s temperature is 
determined by the Fourier equation of the heat transport [2]: 

 

( ) ( )1/ / /p mc T t r rk T r rρ − ⎡ ⎤∂ ∂ = ∂ ∂ ∂ ∂⎣ ⎦ ,         (1) 

 
where 1( ) mR t r R< < . In eq. (1) pc  is the specific heat, 

mρ  is the mass density and k  is the thermal conductivity 
of the material. The solution of eq. (1) with the following 
boundary conditions: 
 

1( , ) , ( , ) , ( , 0)       m m g mT R t T T R t T T r t T= = = =   (2) 
 

represents the spatio-temporal distribution of the 
temperature in zone 2: 
 

2 2 2
0 0 1 1 1

2 21 0 0 1 1

( ) ( / ) exp[ / ] ln[ / ] ln[ / ]
( , ) ( )

( ) ( / ) ln[ / ]
  j j j m m g

m g
j j j m m

J Z r R a t R T R r T r R
T r t T T

J J R R R R

α α α
π

α α

∞

=

− +
= − +∑

−

, (3) 

 
where 

0 1 0 1 0 1 0 1 0 1( / ) ( / ) ( / ) ( / ) ( / )j j m j j j mZ r R N R R J r R N r R J R Rα α α α α= − , 

( )0J pr  are the first order Bessel functions, ( )0N pr  are 

the Neumann functions, /( )p ma k c ρ= , while 

1j jp Rα ≡  are the roots of the characteristic equation: 

[ ] [ ]0 0 1 0 0 1( ) / ( / ( ) / ( / ))m mJ J R R N N R Rα α α α= . 
 

ii) The stresses due to the thermal gradients during  
     the solidification process 
 
We consider that the components of the displacement 

vector ur  of any point of the microwire, namely ,ru uθ  
and zu  are independent on/each other. Because of the 
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spatial symmetry of the solidification process, and 
implicitly of the displacements and strains generated by 
this process, .u constθ =  in each point of the material. 
Because of this, we are interested only in the radial ( ru ) 

and axial ( zu ) components of the vector ur . The radial 

temperature gradients generate the radial ( m
ru ), axial ( m

zu ) 

and azimuthal ( muθ ) displacements in the microwire, 
which lead to the following non-zero components of the 
stresses [3]: 

 

( ) ( ){ }1
2 2 2

2

1
( , ) 1 ( ) ( )

1
/

x
m m m
rr

E
x x xT x dx xT x dx

x ε ε

α
σ ε ε ε

µ
= − − −∫ ∫

−
⎡ ⎤⎣ ⎦

, (5.1) 

 

{ }1
2 2 2 2

2

1
( , ) ( 1 ( ) ( ) ( )

1
) /( )

x
m m mE

x x xT x dx xT x dx x T x
xθθ

ε ε

α
σ ε ε ε

µ
= + − + −∫ ∫

−
⎡ ⎤⎣ ⎦

, (5.2) 

 

{ }1
22 /(1 ) ( ) ( )

1
( , )m m m

zz
E

xT x dx T xx
ε

α
σ ε

µ
ε − −∫

−
⎡ ⎤= ⎣ ⎦ .    (5.3) 

 
where mE  is the Young’s modulus, 1( ) ( ) / mt R t Rε ε= =  

and / mx r R= . The radial, azimuthal and axial stresses in 

a certain point x , ( )0 1x< <  result by integrating the 
expressions appearing in eqs. (5), i.e.: 
 

0
( ) ( , )

 

 

xm m
rr rrx x dσ σ ε ε= ∫ , 

0
( ) ( , )

 

 

xm mx x dθθ θθσ σ ε ε= ∫ ,  

0
( ) ( , )

 

 

xm m
zz zzx x dσ σ ε ε= ∫ .                        (6) 

 
 

iii) The Stresses due to the compression of the interior  
      shells by the exterior ones  
 
Due to the radial temperature distribution in the solid 

shell, the thermal stresses are induced inside the shell. 
These stresses are given by the relations (6). The exterior 
solid shell compresses the inner melted part of the 
microwire and so, during the solidification process, a 
corresponding pressure appears at the interface between 
the two zones (at the interface that separates the melted 
material and the solidified one); this pressure acts from the 
exterior to the inner shells. Using again the notations: 

/ mx r R≡  and 1( ) ( ) / mt R t Rε ε= = , for the 
supplementary stresses (due to the compression) one can 
obtain the following expressions [4]: 

 

( )2 2 1 2( , ) 1 1( )( )s
rr x p xσ ε ε ε − −= − − , 

( )2 2 2( , ) 1 1/( )s x p xθθσ ε ε ε−= + − , 

 2 2( , ) 2 1/( )s
zz x pσ ε ε ε= −                        (7) 

 
 

 
 

Fig. 2. The x -dependence of the total stresses (due to 
the  thermal  gradients  and to the compression) induced  
                  in the metallic part of the AGCM. 

 
By integrating, one can obtain: 

0
( ) ( , )

 

 

xs s
rr rrx x dσ σ ε ε= ∫ , 

0
( ) ( , )

 

 

xs sx x dθθ θθσ σ ε ε= ∫ ,                   (8) 

0
( ) ( , )

 

 

xs s
zz zzx x dσ σ ε ε= ∫ . 

 
The pressure p  exerted due to the solidification of 

the inner melted shell is determined by the compression of 
the whole solidified exterior shell, which is submitted to 
radial stresses due to the thermal gradients. Thus, we may 
write: 
 

0
( ) ( , )

 

 

x m
rrp p x x dσ ε ε≡ = −∫ , 

 
where ( , )m

rr xσ ε  is given by (5.1). The pressure p  
determined above is replaced into (7); these expressions 
are combined with (8), which give the stresses (radial, 
circum-ferential and axial), due to the compression. The 
total stresses in the microwire are obtained from the 
algebraic summation of the stresses due to the thermal 
gradients ( )mσ  and those due to the compression ( )sσ : 

( )m tot m sσ σ σ= + . These total stresses are represented in 
Fig. 2. 
 

2.2. Calculation of the internal stresses during the  
        cooling process from gT  to room temperature  
 
i) Temperature distribution in the AGCM 
 
(a) temperature distribution in the metallic core 
 
In the following, we analyse the rapid cooling of the 

solidified metal from the temperature gT  to the room 
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temperature. As it will be shown, from a mathematical 
point of view, we may consider this as a problem of 
conduction and thermal transfer with a source, and it 
implies the determination of the spatio-temporal 
distribution of the temperature 1( , )T r t  of the solidified 
material, which has in the center of the microwire the 
temperature gT ; the source is distributed on the inner 

surface of the glass cover, having the temperature wT . The 
heat losses in the alloy due to its forced cooling may be 
assimilated to some negative sources uniformly 
distributed. In the volume unity, the amount of sources is 
given by: 

 
1

1 12 ( )w mM k T T R−= − − . 
 

The determination of the temperature 1( , )T r t  
implies to solve the equation of thermal balance for the 
material in the metallic part of the microwire, which is 
submitted to a rapid cooling process. Thus, from a 
mathematical point of view, this condition becomes: 
 

( ),1
1

1
2
1

2
1

wTTb
r
T

rr
Ta

t
T

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂  for 0 r R≤ ≤ ,            (1) 

 

where ( ) 1

1 m pa k cρ
−

= , ( ) 1

1 m pb k PL c Vρ
−

= , 

2 mP Rπ= , and L  is the AGCM length. The general 
solution of this equation is of the form: 
 

( ) 22
1 0( , ) ( / ) n a t

wT r t T C I r b a n e−= + − , 

 
where C  is an integration constant. By imposing the 
following “boundary” conditions, 
 

( )
1

1 0

( 0, 0) ,

/ 0,
g

r

T r t T

T r
=

= = =⎧⎪
⎨ ∂ ∂ =⎪⎩

                       (2) 

 
one can determine the constant C : g wC T T= − . We 
finally obtain the temperature distribution in the material: 
 

( ) 22
1 0( , ) ( ) ( / ) n a t

w g wT r t T T T I r b a n e−= + − − .     (3) 

 
 

(b) temperature distribution in the glass cover 
 
During the cooling process the glass cover receives 

the heat flux from the cooling metal. We will consider the 
temperature distribution in the glass cover of the form [4]: 

 

212 )ln(),( ArAtrT += ,                  (4) 
 

where 1A  and 2A  depend only on the time variable t : 

1 1( )A A t≡ , 2 2 ( )A A t≡ . 
 
 

(c) boundary conditions for the metal-glass interface 
 
 In order to determine the final expressions of the 

temperature, 1( , )T r t  and 2 ( , )T r t  we must use the 
following boundary conditions: 

I) The heat flux  from the metallic part is received by 
the glass cover. This heat flux must be continous. So, for 

1r R=  we must have 
 

( ) ( )1 1 2 2/ /
m mr R r R

k T r k T r
= =

∂ ∂ = ∂ ∂ ,   (5) 

 
where 1k  and 2k  are the coefficients of thermal 
conductivity of the metal and glass cover, respectively; 

II) On the metal-glass interface ( mr R= ), the 
temperatures of the adjacent regions must be equal: 

 
)()( 21 mm RrTRrT === ;                        (6) 

 
III) The temperature on the outer surface of the 

AGCM, is equal to the room temperature, that is: 
 

ww TRrT == )(2 .                             (7) 
 

Using the boundary conditions given by (5) and (7) 
we obtain the following expressions for 1A  and 2A : 
 

( ) ( )1 2 2 2
1 1 2 1( ) ( ) ( / ) ( / ) ( )m g w mA t k k R T T b a n I R b a n exp an t−= − − − − ,  (8) 

 

( ) ( )1 2 2 2
2 1 2 1( ) ( ) ( / ) ( / ) ln( ) ( )w m g w m wA t T kk R T T b a n I R b a n R exp ant−= − − − − −  (9) 

 
and from conditions (6) we obtain the constant n  as the 
solution of equation: 
 

( ) ( ) ( ) ( )2 1 2 2 1
0 1 2 1( / ) ( / ) ( / ) lnm m m m wI R b a n k k R b a n I R b a n R R− −− = − −  (10) 

 
The constants 1A  and 2A  have been calculated 

considering the characteristics given in Table 1. Solving 
the eq. (10) it results the constant n  that help us to 
determine the spatio-temporal distribution of the 
temperature in AGCM. Fig. 3 (a) shows the spatio-
temporal evolution of the temperature in the material of 
the microwire, which is subjected to forced cooling to the 
room temperature. 
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(a) 
 

    
 

(b) 
 

Fig. 3. The spatio-temporal distribution of the 
temperature in the metallic core of the AGCM. 
 

Fig. 3 shows the spatio-temporal disrtibution of the 
temperature in the metallic core of the AGCM having the 
radius 3.65mR mµ=  and the thickness of the glass cover 

7.50w mg R R mµ= − = . From this figure one can see 
that, concerning the radial distribution of the temperature, 
between the metallic core of the microwire and the metal-
glass interface there is a temperature difference which is 
bigger in the first stages of the cooling process and smaller 
at the end of this process. Regarding the time evolution, 
(see Fig. 3(b)), the temperature decreases from 

800gT K=  to the room temperature 300wT K= , during 

the time interval of about 40. ns , measured from the end 
of the solidification process. In Fig. 4 we have presented 
the radial distribution of the temperature both in the cross-
section of the metallic core (the red curves) and in the 
glass cover (the blue curves) at the three time moments, 
namely: 1 0.1t ns= , 2 0.2t ns=  and 3 0.3t ns= , 
respectively. The temperature difference between the 
center of the metallic core and the metal-glass interface 
decreases with the time passing. For instance, for 

3 0.3t ns=  we have 0 0.27
mRT K∆ = , while for 

4 0.01t ns=  we have 0 7.72
mRT K∆ = . The radial 

distribution of the temperature in the glass cover is 
represented in Fig. 4. As one can see, after the time 

1 0.1t ns=  from the end of the solidification process, the 
temperature diference between the metal-glass interface 

and the exterior surface of the AGCM is of 
437

m wR RT K∆ = , while after the time 3 0.3t ns=  this 

difference is about 15
m wR RT K∆ = . 

 

 
 

Fig. 4. The radial distribution of the temperature in the 
AGCM’s cross-section after different moments 
( 1 0.1t ns= , 2 0.2t ns=  and 3 0.3t ns= ). 

 
 

 
 

Fig. 5. The radial distribution of the temperature in the 
AGCM’s cross-section (with 11.15wR mµ= ), after the 

time 0.2t ns=  for three values of the radius mR  

( ' 3.65mR mµ= , '' 5mR mµ=  and ''' 7mR mµ= , 
respectively) 

 
 

The Fig. 5 shows the radial distribution of the 
temperature in the AGCM’s cross-section (both in the 
metallic core of the microwire and in the glass cover) at 
the moment 1 0.2t ns= , for three values of the radius of 

the metallic core: ' 3.65mR mµ= , '' 5mR mµ=  and 
''' 7mR mµ= , respectively. As one might have expected, 

after 0.2t ns= , the temperature in the core of AGCM, 
with the smaller radius of the metallic core 
( ' 3.65mR mµ= ) and the bigger glass cover thickness 

( ' 7.50g mµ= ), is lesser than the temperature in the 
center of AGCM with the bigger metallic core’s radius 
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( ''' 7mR mµ= ) and the smaller glass cover’s thickness 

( ''' 4.15g mµ= ), as this last one is cooling slower. In the 
glass cover, one can observe that as its thickness gets 
smaller, the temperature’s difference between the exterior 
surface of the microwire and the metal-glass interface 

m wR RT∆  becomes larger, i.e.: for ' 3.65mR mµ=  

( ' 7.50g mµ= ), 48
m wR RT K∆ = , while for ''' 7mR mµ=  

( ''' 4.15g mµ= ), 108
m wR RT K∆ = . 

 
ii) The internal stresses which appear in the metallic core 
     during the forced cooling process  
 
Let us analyze now the spatio-temporal distribution of 

the stresses which appear both due the thermal gradients 
and to the constraints produced on the glass cover by its 
ultra-rapidly cooling, as a result of the difference between 
the thermal expansion coefficients of the two materials in 
contact. 

In order to obtain the stresses distribution during the 
cooling process of the AGCM, we will use the spatio-
temporal distribution of the temperature presented in the 
above section. 

The radial temperature gradients lead to the 
appearance of some displacements, both in the metallic 
core ( metal

ru  and metal
zu ) and in the glass cover ( glass

ru  and 
glass
zu ). These displacements satisfy the differential 

displacements’ equation. In cylindrical coordinates, this 
equation reads [5]: 
 

rd
trTd

dr
rud

rdr
d

metal

metal
r ),(

1
1)(1 1α

µ
µ

−
+

=⎥
⎦

⎤
⎢
⎣

⎡
,     (11) 

 

( )/ .,metal
zdu dz const=                    (12) 

 
for the metalic part and  
 

0)(1
=⎥

⎦

⎤
⎢
⎣

⎡
dr

rud
rdr

d glass
r ,                    (13) 

 

( )/ .,glass
zdu dz const=                        (14) 

 
for the glass cover. In the above relations metalα  is the 
alloy’s thermal expansion coefficients, µ  is the Poisson’s 

coefficient while 1( , )T r t  is the spatio-temporal 
temperature distribution in the metallic core (3). It is 
assumed that the values of Poisson’s coefficient for metal 
and glass cover are the same: 1/ 3metal glassµ µ µ= = = . 
We will consider the influence of the 
constriction/dilatation effects, which exists due to the 

different cooling of the two materials in contact (different 
dilatation coefficients), as well as the residual thermal 
stresses induced in the glass cover, due to the these effects. 
The solutions of (11) – (14) equations (representing the 
radial, ( )glass

ru r , axial glass
zu  displacements in the metal, 

( )metal
ru r  and metal

zu ) lead us to the following expressions 
of the stresses, first in the metallic part [6], 
 

∫−
−

−+
+

=
r

metalmetalm
m

metalmetal
rr drtrTr

r
EbCEtr

0
12

1 ),(
)1()21()1(2

)2(),(
µ

α
µµ

µσ , (15.1) 

 

µ−
α

−

−∫
µ−

α
+

µ−µ+
µ+

=σθθ

1
),(

),(
)1()21()1(2

)2(
),(

1

0
12

1

trTE

drtrTr
r

EbCE
tr

metalmetal

r
metalmetalm

m
metalmetal

,      (15.2) 

µ
α

µµ
µσ

−
−

−+
+

=
1

),(
)21()1(

)2(),( 11 trTEbCEtr metalmetalm
m

metalmetal
zz

,   (15.3) 

 
and then in the glass cover, 
 

2
21

)1()21()1(2
)2(

),(
r

CEbCE
tr

l
glassl

l
glassglass

rr µµµ
µ

σ
+

−
−+

+
= ,  (16.1) 

 

2
22

)1()21()1(2
)2(

),(
r

CEbCE
tr

l
glassl

l
glassglass

µµµ
µ

σθθ +
+

−+

+
= ,  (16.2) 

 

)21()1(
)2(

),( 1

µµ
µ

σ
−+

+
= l

l
glassglass

zz

bCE
tr .              (16.3) 

 
In order to determine the spatio-temporal distribution 

of the stresses both in the metallic part of AGCM and in 
the glass cover, we need to know the numerical values of 
the constants: 1 ,m

mC b , 1 ,l
lC b  and 2

lC . This can be 
done by imposing the boundary conditions that also take 
into account the different thermal behaviour of the two 
material in contact.  

We will now calculate the resultant strain due to the 
cooling process of the two materials with different thermal 
expansion coefficients which are in contact during the 
entire process. The law of the linear thermal expansion is: 

0 (1 )l l Tα ∆= + , where l  is the linear dimension of the 

body in the chosen direction, at the temperature T , 0l  is 

the same linear dimension at the temperature 0T , 

0T T T∆ = −  is the temperature range in which the 

variation 0l l l∆ = −  takes place, and α  is the thermal 
expansion coefficient. In our case, for the metallic part of 
the microwire, we have: metal metal Tε α ∆= , and for the 

glass cover: glass glass Tε α ∆= , where glassε  and metalε  are 
the strains due to the thermal contraction in the metallic 
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part of the AGCM and in the glass cover, respectivelly, 
and glassα  is the thermal expansion coefficient of the glass. 
The resultant strain is: 

( )metal glass metal glass Tε ε ε α α ∆= − = − . In this case, T∆  is 

the difference between the gT  and the room temperature, 

wT . 

In order to determine ( , )metal
rr r tσ , ( , )metal r tθθσ  and 

( , )metal
zz r tσ  we must find the values of the constants 

1 ,m
mC b , 1 ,l

lC b  and 2
lC . The following conditions 

must be imposed on the metal-glass interface: 
 I) the strains that appear in this process result due 
only to the difference between the thermal expansion 
coefficients of the metal and glass: 
 

mm
glass
rm

metal
r RRruRru ε)()( ==−= ; 

 
 II) the equilibrium condition on the metal-glass 
interface: 
 

),(),( tRrtRr m
glass
rrm

metal
rr === σσ  

 
 III) the equilibrium condition on the exterior 
surface ( wRr = ) of the microwire: 
 

0),( == tRr w
glass
rrσ . 

 
Using these three conditions we can determine all the 

constants that appear in the expressions (15) and (16) of 
the stresses: 

 
1

2 2 2 2 2 2 2 2

2 2 2 2 2

( 2 )
2(1 )(1 2 )

( ) ( 1) ( )( 1) ( 3 2 )
,

( 1 ) ( )(3 1) ( (1 3 ) 2 )

m
m

glass m m w metal glass m w metal m m w

m glass m w metal m w

C b

E R R R A E R R E R R R

R E R R E R R

µ
µ µ

ε µ α µ µ µ

µ µ µ µ

+
=

+ −

⎡ ⎤− − + − + + − +⎣ ⎦= −
⎡ ⎤− + − − + − +⎣ ⎦

 

 
 

2
1

2 2 2 2

( 2 ) (2 )
2(1 )(1 2 ) ( )(3 1) ( (1 3 ) 2 )

l
l metal metal m

glass m w metal m w

C b E A R
E R R E R R

µ α ε
µ µ µ µ µ
+ −

=
+ − − − + − +

, 

 
 

2 2

2 2 2 2 2

(2 ) ( 1)
( )(3 1) ( (1 3 ) 2 )

l metal w metal m

glass m w metal m w

E R A RC
E R R E R R

α ε µ
µ µ µ

− +
=

− − + − +
, 

 
 

where 10 ( , )mRA r T r t dr= ∫ . The explicit form of the 
stresses results by replacing the already determined 
constants in the relations (15) and (16).  

 
 

Fig. 6. The spatio-temporal distribution of the radial   
stresses in the metallic core of an AGCM having 

      3.65mR mµ=  and 7.50w mg R R mµ= − = . 

 
 
 

 
 

Fig. 7. The spatio-temporal distribution of the azimuthal  
stresses in the metallic core of an AGCM having 

3.65mR mµ=  and 7.50w mg R R mµ= − = . 
 

The Figs. 4, 5 and 6 show the spatio-temporal 
distributions of the radial, azimuthal and axial stresses in 
an AGCM having the radius of the metallic part of 

3.65mR mµ=  and the thickness of the glass cover of 

7.50w mg R R mµ= − = . 
The spatio-temporal behaviour of the three stresses 

(radial, azimuthal and axial) after the time 0.02t ns=  
from the complete solidification of the metallic core can 
be seen in Figs. 6, 7 and 8. We observe that the magnitude 
order of these stresses is 810 Pa . As a common feature of 
the curves that represent the three stresses, we observe that 
they asimptotically tend to a saturation value which 
corresponds to the room temperature. This fact can be 
better observed in Fig. 9. 
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Fig. 8. The spatio-temporal distribution of the axial 

stresses in the metallic core of an AGCM having 
3.65mR mµ=  and 7.50w mg R R mµ= − = . 

 
 

 
 

Fig. 9. The temporal evolution of the three stresses  
   (radial, azimuthal and axial) in the point mr R= . 

 
In Fig. 9 one can observe at mr R=  that the axial 

stresses are approximately two times larger than the radial 
stresses. Moreover, the axial stresses obtain the saturation 
flat in a time shorter then for the other stresses. From            
Fig. 9 one can observe a relaxation of the stresses after the 
time interval 0.35t sµ= , when the sample has already 
reached the room temperature. The minimization of the 
stresses up to an approximately constant value in the 
temperature’s interval (800 300) K−  shows us that the 
transformed (solidified) material has reached a much more 
regular structure. From eqs. (15) and (16), by analyzing 
the distribution of stresses in the metallic core of AGCM 
as functions of different radius of the AGCM, one can 
deduce that: the smaller the metallic core’s radius, the 
bigger the stresses induced in this core. 
 
 

2.3. The magnetic domains structure of AGCM.  
       Results and discussion 
 
In this subsection, we evaluate the total stresses in the 

AGCM from the algebraic summation of the stresses due 
to both solidification process ( )m totσ  and rapid cooling 

from gT  to room temperature, wT . These total stresses are 
represented in Fig. 10. 

 

 
 

Fig. 10. x -dependence of the resultant radial, azimuthal  
            and axial stresses induced in the AGCM. 

 
As one can observe from Fig. 10, the total stresses 

distribution leads to a magnetic domains structure of the 
AGCM as follows: starting from the point 0x =  up to the 
point 0.945z rx − =  there is a region in which ( )zz xσ  is 
the component with the highest value and it is positive 
(zone I). From this point to the point 0.985ozx =  there is 
a second region, much narrower than the first one, in 
which ( )rr xσ  is the highest positive stress component 
(zone II). The remaining part of the microwire constitutes 
a third region, dominated by the negative values 
(compression) of ( )zz xσ  and ( )xθθσ  (zone III). 

As it is well known, the 77.5 7.5 15Fe Si B  alloy is highly 

magnetostrictive ( )53 10λ −= ⋅ . This feature leads to a 

strong coupling (between the internal stresses and the 
magnetostriction) that determines the appearance in the 
AGCM of the easy axes of magnetization in the regions in 
which the dominant internal stresses are tensile (positive) 
and respectively, of the hard axes of magnetization in the 
regions in which the dominant stresses are compressive 
(negative). So, the magnetoelastic energy minimization 
leads to a domain structure which presents the following 
three zones: 

- zone I: [0, )z rx x −∈ ; due to the coupling between 

( )zz xσ  (positive) and the magnetostriction the first zone 
results, with an uniaxial magnetic anisotropy having the 
easy axis oriented along the axis of the AGCM ( Oz  - 
axis); 

- zone II: ( , ) z r ozx x x−∈ ; due to the coupling 

between ( )rr xσ  (positive) and the magnetostriction the 
second zone results, with a radial magnetic anisotropy. 
Also, in this zone the compressive component ( )xθθσ  
generates a hard axis of magnetization on the azimuthal 
direction; 
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- zone III: ( , 1] ozx x∈ ; in this zone the two compressive 

components ( ( )xθθσ  and ( )zz xσ ) generate two hard axis 
of magnetization on the azimuthal direction and on the 
axialdirection, respectively. Also, this zone presents a third 
(easy) axis of magnetization which appears because of the 
coupling between the ( )rr xσ  (positive) and the 
magnetostriction. 

Synthesizing, we can state that the stress distribution 
from Fig. 10, coupled with the high positive 
magnetostriction of the 77.5 7.5 15Fe Si B  alloy, leads in a first 
order approximation to an easy axes distribution 
associated with a domain structure which consist of a 
cylindrical IC with axial magnetization (zone I) and an OS 
with radial magnetization (zone II plus zone III). 
 
 

3. Experimental results 
 
In order to verify by experimental means the above-

obtained theoretical results, we have performed magnetic 
measurements on 77.5 7.5 15Fe Si B  AGCMs by a fluxmetric 
method [7] in an alternating field having a maximum value 
of 17.500 /A m , at 200 Hz . We have measured the 

switching field *H  – that is the field at which the LBE 
appears – and the magnetization *M  at this field. For the 
considered microwire, the LBE occurs at * 12 /H A m= , 
and we have found an experimental value of the ratio 

( )*

exp
/ sM M  of 0.95 . Using the relation [8]: 

 

( )1/ 2*/ /c m sR R M M= , 
 

we have determined the experimental value of the fraction 

( )exp exp /z r z r mx r R− −≡  as being 0.975 . The small difference 

between the theoretical evaluation 

( )*0.945, / 0.89theor
z r s theor

x M M− = =⎡ ⎤
⎣ ⎦  and 

experimental data [9], 

( )exp *

exp
0.975, / 0.95z r sx M M− = =⎡ ⎤

⎣ ⎦
, can be attributed 

to the supplementary axial tensile stresses induced in the 
preparation process of the AGCMs due to their continuous 
mechanical drawing. The good concordance between the 
experimental data and the theoretical results obtained in 
our paper represents an improvement with respect to big 
majority of the older models (see for example [10]).  
 
 

4. Conclusions 
 
The theoretical model described in this paper shows in 

a clear and synthetic manner the spatio-temporal 
distribution of the stresses induced in the metallic core of 

an AGCM, during its cooling and solidification to the 
room temperature, considering both the thermal behavior 
of the metal and the supplementary stresses induced by the 
glass cover, due to the different cooling of the two 
materials in contact. We first analyzed the stresses 
appeared during the solidification of the metallic part of 
the AGCM, whose exterior surface is maintained at a 
constant temperature, wT . The determination of these 
stresses implies the knowledge of the thermal behavior of 
the metal-glass system. In the thermal evolution of the 
metallic core, the longer the time interval from the 
beginning of the cooling process, the smaller the 
difference between the temperature in the center of the 
microwire and the temperature on the metal-glass 
interface. The center of the microwire “reaches” the room 
temperature, 300wT K= , in approximately 0.4t ns=  
from the moment of the material’s solidification.  

As the AGCM gets a bigger radius of the metallic 
core, the temperature in its center decreases more slowly. 
In the glass cover, one can deduce that, as its thickness 
becomes smaller, the temperature difference between the 
interior and the exterior surfaces,

m wR RT∆ , becomes 

greater.  
As for the stresses’s behavior, we deduced that the 

three stresses depend on the radius of the metallic core, 
being positive. The magnitude order of these stresses is 

910 Pa ; as a common feature, one can observe that all 
stresses tend toward a saturation value, corresponding to 
the room temperature. The decrease of stresses (their 
relaxation) up to an approximately constant value in the 
temperature interval (800 300) K−  shows us that the 
transformed (solidified) material has adopted a much more 
regular structure. The smaller the radius of the metallic 
core of AGCM, the bigger the stresses induced in the 
alloy.  

Concerning the magnetic domains structure we have 
obtained the following results: 

1) Starting from the point 0x =  up to the point 
0.945z rx − =  there is a region in which ( )zz xσ  is the 

component with the highest value and it is positive (zone 
I). From this point to the point 0.985ozx =  there is a 
second region, much narrower than the first one, in which 

( )rr xσ  is the highest positive stress component (zone II). 
The remaining part of the microwire constitutes a third 
region, dominated by the negative values (compression) of 

( )zz xσ  and ( )xθθσ  (zone III);  
2) The small difference between the theoretical 

evaluation and experimental data, can be attributed to the 
supplementary axial tensile stress induced in the 
preparation process of the AGCM due to its continuous 
drawing. 
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