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The cavity perturbation method for the measurement of
the relative dielectric permittivity in the microwave range

S.-B. BALMUS, G.-N. PASCARIU, F. CREANGA, |. DUMITRU, D. D. SANDU
Faculty of Physics, “Al. I. Cuza” University of lasi, Romania

The cavity (small) perturbation is a very suitable method for the measurement of the dielectric relative permittivity at
microwave frequencies. In this paper we give the most important relations of this method, particular relations for rectangular
resonant cavities and some experimental results. Also, an analysis of total relative errors and the second order

perturbations method are presented.
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1. Introduction

The perturbation of resonant cavities may be achieved
by the modification of the volume (shape perturbations) or
by the introduction of small pieces of dielectric or
ferromagnetic material (material perturbations). In the
case of dielectric measurements, the second way is
applied. Consider that a original cavity (Fig. 1a) is
perturbed by a change in the permittivity or permeability
(Fig. 1b).

The change of the resonant frequency of the perturbed
cavity due to material perturbation is given by the relation

(1], [2]. [3]

~[le2 - 20)Er By + (up — )T -y oV
Ve

0, o 1)
o J(gléi'éz +ﬂ1HI'H2)dV
Ve
where: E;,H,,o;,1, and & characterize the unperturbed
cavity; E,,H,,0,, p,=p;+Ap and &, =g +Ac

characterize the perturbed cavity.
This relation is an exact equation for the change in
resonant frequency but it is not a very usable form since

we generally do not know the exact fields E,, H, in the

perturbed cavity. In the case of measurements a lot of
approximations were proposed. The most spread
approximation considers very small material samples
compared with the cavity volume; in these cases we have
small perturbations of the cavity.

In this work we are dealing with very small dielectric
samples. Therefore we can consider that the measurement
method is based on small perturbations of the resonant
cavity.

Cavity perturbation measurements can be highly
accurate and are particularly advantageous in the
determination of relative permittivity of dielectrics with
small loss tangents. Perturbation techniques permit the
measurement of dielectric samples of small sizes and
various shapes. The most convenient of the shapes are the
spheres, rods, discs and slabs.

2. Approximations for thesmall perturbations
of the resonant cavity

In our paper we consider that the first cavity 1 is
empty (wy, =uo ande; =¢4) (Fig. 1a) and the volume Vg
of the sample is very small compared with the volume V.
of the cavity (Fig. 1b), therefore we can assume that
E, =E, and H, = H, in the integrands of denominator

of eq. (1).Under these conditions this equation can be
rewritten as follows

_j(gz—fo)EI'EZdV—J‘(ﬂz—ﬂo)ﬁi'ﬁzdv (2)
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where the integrands of the denominator become

_ (2 - 2
‘El‘ and ‘Hl‘ respectively, and the resonance equality

& Hél‘zdv = 1 HI—Tl‘ZdV ®)
V, Vi

C C

was used. The integrations in the nominator of eq. (2) are
performed only over volume Vg of the sample since in the

cavity 2 we have o = g andg, =&y except the
small volume V.

Fig. 1. a- empty cavity; b- introduction of the dielectric
sample.
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When the sample is assumed non-
magnetic, 1p = U, the second term of the nominator in
eqg. (2) drops out and we obtain

[Ef-Epav
wy—wy _ €r2—1 v )
ﬂél\zdv
Ve

() 2

where: &9 = &9 /80 is the relative (complex) dielectric
permittivity of the sample; El is the field in the empty

(non-perturbed) cavity; EZ is the field in the sample and

is determined by the shape and the size of samples.

Generally the empty cavity and dielectric materials
have losses. Therefore the angular frequency @
associated with a dissipative system is a complex quantity
and can be written as [4]

0 =g + jo, (5)

and the overall quality factor Q is defined as

oR
=—R_ 6
Qr 20, (6)

Consider the expression

00 _ 02 =0y ™
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where: both @, and @, are complex in the sense of eq.
(5), WR1 = WR?2
5(0/ @ and taking into account these approximations, we
have

@:(O)RZ*@RJ*J-(@JZ*")M):[[fRz—fR1]+j[ 11 ﬂ{l_j 1
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and @; << wg. On expanding

(8)
)
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where fR2 = 0)R2/27Z', le = a)Rl/Zﬂ'

Since 1/2Qy, can be neglected compare with unity
we can write

5_w:fR2_le+j(1 1}
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This equation provides the link between the measured
quantities, frand Qg , and the theoretical expressions

involving é'a)/a) which are considered in eq. (4). By

substitution of eqg. (9) in eq. (4) we obtain the small
perturbation formula

[Ef-Epav 0
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fr2 Qr2 Qs J‘El av
Ve

If we consider a filling coefficient defined by the
relation [3]

[El-E dv
N=" (11)
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eg. (10) can be rewritten as follows

fo, — f (1 1
PRt R1+j( - j:—(g ~1N (12)
fro Qr2 Qg &

In almost all practical cases &, is a complex

quantity .5 = &ro — &, therefore we have

fri—f
gbzhﬁmaagkzl(l_rlj (13)
N fgp N\Qrz Qri

The filling coefficient may be determined if the fields

in the cavities are known before and after the perturbation;
also it may be determined experimentally using a sample

with known &5 and &75 .

3. Particular results for the rectangular cavities
3.1. Experimental setup

The experimental setup is presented in Fig. 2.

Fig .2. Experimental installation (Hewlett packard
8714C 300KHz-3000MHz RF network analyzer).

NETWORK
ANALYZER -

In our experiment we used the small perturbations
method for a rectangular cavity, having the dimensions
a=58cm, b=25cmand ¢c =9.16 cm and which is
oscillating on the TE;q; mode at 3GHz. The cavity, which
initially was emptye&q = &g, is perturbed by the
introduction at x=a/2, z=bh/2 and y=0+b of a cylindrical
dielectric sample having the radius r and relative dielectric
permittivity £, . After the perturbation the oscillation
mode and the field lines are unchanged but the resonance
frequency f, and the quality factor Q decrease.
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3.2. The permittivity expressions

The electrical field for the TE;; mode has only one
component [4]

. . (7 (7
E, =—JEq, SIN| —X [SIn| — 2 (14)
where Eo, is a real constant depending on the applied

signal
Assuming that the electrical field inside the dielectric

sample (E, = E;) is constant

E; =-]Egy sin(%jsin(%j =—]JEpy (19

the filling coefficient (11) becomes

4rr?
N = (16)
ac
Therefore, for the complex permittivity we have
ac fy —f
gy = 14— 2 17)
2rr 1:2r
o ac [ 1 1 j )
r2 = ~ A
4rr?\Q, Qg

3.3. Experimental results

Some experimental results obtained from the
measurements of some usual materials used in the
microwave range and some epoxy resins are presented in
Table 1 and Table 2.

Table 1. Results obtained for some usual materials
(resonance frequency f,=3GHz).

Sample | Empty | Teflon | Methacrylate | Erthalon | Eralyte | PVC
cavity | (PFTFE) | (PMMA) 12 TX Ivory
Radius
(mm) 25 25 25 25 25
N 0 0.0148 0.0148 0.0148 | 0.0148 | 0.0148
' 1 2.05 2.50 2.94 2.78 2.61
Ey
g;r 0 0.0003 0.0005 0.060 | 0.0006 | 0.020
Table 2. Result obtained for some epoxy resins
(resonance frequency f,=3GHz).
Sample Epoxy Epoxy Epoxy Epoxy
resin resin + resin + resin
+ Triethylene- | Bismaleimide +
Polyurethane | tetrachloride- | C,;H14N,O, | Diaminodiphenyl-
amine methane
CisHuN,
Radius
(mm) 1.45 1.45 1.45 1.45
N 0.005 0.005 0.005 0.005
’ 3.12 3.24 3.10 3.26
Er
" 0.205 0.21 0.14 0.208
Er

The values of the permittivity obtained in our
experiments are in good agreement with the values given
in the literature (handbooks and papers). In Table 3 are
presented the catalog values [6] of the permittivity of
some materials that we used in our experiments.

Table 3. The catalog values for some material used in our
experiments.

Sample Teflon | Erthalon | Methacrylate
(PTFE) 12 (PMMA)
8} in reference [6] 2.0+21 2.9 2.6
SI', in our experiments 2.05 2.94 2.5

3.4. Relations for the calculus of total relative
errors

Applying the logarithm to the relation (17) and
separating the terms we obtain

T

In(e; —1)=Ini—2Inr+Ina+Inc+Inu (19)
r2 2 f
2r

Calculating the differential of this relation we have

derp _ p0r,da dc 1 fr

. dfy, +
o er(er_flr)

' - df2r (20)
& —1 r a c f,—fy

Using that f;, > f,,, we pass to finite differences
ﬂ+ﬁ+£+ 1 flr A f2r (21)

;2
—_— 2
2r ( 1r 2r )
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Because

the measurement errors are the same
(22)

Aflr :Af2r :Af,
for each frequency

the expression (21) becomes

Aorg _pAr Aa Ac, fwtler o)
-1 1 a ¢ f(fy—fy)

The measurement errors for the cavity dimensions are
Aa=Ac=10"m=10"2%cm (@ = 58 cm, and
¢ = 9.16 cm) which means that the terms containing the

dimensions of the cavity give errors which are smaller
then 0.002; therefore they can be ignored

Asry 52£+ fir + for Af

1:Zr( flr - f2r )

Using a HEWLETT PACKARD 8714C 300 KHz -
3000 MHz RF NETWORK ANALYZER the

(24)
8;2 -1 r
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measurement error for frequencies is A f =107 MHz,
fi for =3000MHz and fy, — f,, = 20MHz . This means

that the approximate value of the second right term in eq
(24) is 10™ - 10™ and we can ignore this term compared
with the first one.

Ar
- ~2—
Ero — 1 r
In order to calculate the relative errors for the
imaginary part of permittivity we apply the logarithm to
the relation (18), and separating the terms we have

Asry

(25)

Ingy, :In41—2lnr+lna+lnc+ln[1—1] (26)

7 2

If we calculate the differential of the last relation, we
obtain
i o0,
Ero r

da dc
—+

a C

Q do  ~Q dQ

bl (27)
Q-Q; Q Q;-Q1 Q,

Using that Q; > Q, and passing to finite differences
we have

AEI,"Z

Q 4Q Q 4Q (28)
Q-Q Q Q-Q Q

The quality factor is given by

Ar
—S=2—+
Ero r

a c

fr
Q_ fd_fs

where: fr is the resonance frequency; fd is the right

(29)

frequency and fg is the left frequency at —3dB

attenuation of the resonance curve.
We apply the logarithm and separate the terms

INQ=Inf, —In(fy - fs) (30)

By calculating the differential of the last expression
we have

d7Q — ﬁ_ 1 dfd + 1
Q fr fd - fs fd - fs
Using the inequality fy > fg and considering that
the measurement errors are the same for all frequencies

(31)

df,

Af, =Afy=AFf;=4F, we pass to Ainite
differences
4Q _ [;LJA f @)
Q fr fd - fs

Thus, relation (28) becomes

Aoty _,Ar da dc, Q [i+ 2 ]Af+ (33)
&r2 r ¢ Q-Qufy  fig— Ty

@ [i 2 ]Af

Q1 —Qx ( far  foq — fys

The measurement errors for the cavity dimensions are

Aa=Ac=10"*m=10"%cm (a = 5.8 c¢cm, and
¢ =9.16 cm); this means that the terms containing the

dimensions of the cavity give errors which are smaller
then 0.002 and so they can be ignored

Aafiz; AT ok [1+ 2 ]A f+
€r2 ro Q-Qfy fig—fig (34)
+ i [1+2JA f

Ql _QZ f2r fzd - f25

the measurement error for
frequencies is Af=10"MHz,
fy, for =3000MHz and fy — f; =10MHz. This means

that the approximate value of the second and third right
terms in eq. (34) is 10° - 10™ and we can ignore these
terms compare with the first one

As specified above,

ﬁ;zg

r

(35)
&rp

In our experiments the measurement error of the
sample radius isAr =0.05mm and the radius of the

samples is r=1.45+25 mm. This means that the

maximum value of the total measurement error for the
complex permittivity is about 4+7 %.

Asry _ ,Ar
frz=1 T _go4. 36
Ael 3 zﬂ 0.04 +0.07 (36)
8;—12 B r

The maximum total measurement error decreases
when the radius of the sample increases. Increasing the
radius means that also the filling coefficient N increases.
The superior limit for N is 0.1 because above this value
the approximations made for the small perturbations
method are no more correct.

4. The second order perturbation method

The conventional small perturbations method
presented in the previous sections is applicable only when
the sample determines a small perturbation of the cavity
field. Sometimes the material is very fragile and the
technological obtaining of the samples with small
dimensions is very difficult. In this section we will present
a method for the determination of the dielectric
permittivity with smaller errors by taking into account the
superior modes in a second order perturbation formula [7].
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We consider an ideal resonant cavity of a certain
shape which is limited by the domain D. Using the time

dependence exp(— jat)the unperturbed equation which

characterize the intensity of the electric field for each
mode is

(VZ —k2 )Ea =0 (37)
where ¢ is the mode number obtained by arranging the
modes from small frequencies to high frequencies; ka is

the resonance wave number of the & mode.
We suppose that the resonance modes TE and TM in
the cavity are orthonormate and orthogonal

(ETEETF) = [[[ETE -ETFav = 5y
\Y
(ER" ER ) =6m @)
<Er-1r1E ’Er'I]'M > = Pnndmn

Generally we consider that<l§m ,En> =PonOmn;

Pmnn =1 when the type of the resonance modes is the

same.
If the cavity is perturbed by the introduction of a

dielectric sample limited by the domain D; and having
the dielectric permittivity &, the resonance equation
becomes

W2 —K2[1+ g, ()] =0 (39)

where k is the resonance wave number of the perturbed
cavity, A is a perturbation coefficient used for the
visualization of the perturbation order and

1, X e Dl

x(%)= {O (40)

,)?ED—D]_

The electric field of the perturbed cavity can be
developed in function of the orthogonal intensities of the
electric field for the unperturbed cavity

o0
E=>c,E (41)
Using booth resonance equations we can write

ica {(k2 —k2 )Ea +k2 2, (X)E, }: 0 4
a=1

Multiplying the last relation by Eﬁ and integrating

over the volume of the cavity we obtained the equation for
the determination of field amplitude

Sealk? K2)E, )+ K2 e, ARNE, Ejp)j=0  (43)
a=1

which for a fixed £ gives

c[,(k2 —k/%)Pﬂﬂ +k? e, icauaﬂ =0  (44)

a=1
where U ;5 = <I§a|;((7(]|§ﬂ> and C,, are the unknown

coefficients.
To solve the last system of equations we must cancel
out the determinant

‘(k2 K2 PsOas + KPAg U =0 @9

The development of the last determinant is difficult
and in order to solve equation (43) we use an iterative
method. If the perturbation is removed we suppose that the

solution reduce to En and C, =1. Separating the term

corresponding to the unknown coefficient C p we obtain

l(kz - kS)Ppp + ke U ppJCp =

=—rk%e, U, — ke, ¥ ¢ U,
a=np

(46)

In order to develop a method of successive
approximations we must write the equation for the

determination of Cq- To avoid the repetition we separate
the terms in pand n

l(kz _kg)qu +}‘k28ruqq J Cqq =

__xkzg (47)

=—1k%e U, —rk%e,c U

rCpap p 2 ClUq

r=npq

Till now no approximations were done. The solution
of last equations is obtained by eliminating the sum from

the N™ equation, solving this equation for gy and

introduction of the result in the (N-1)" equation. For
N = 3 we eliminate the sum from (46) and we find

Uqn )
2 2 2
(k2 —K2 JPyq +1k2e,U g

CpUgp

Cq =-1kZe,

(48)

-1k%g,
2 2 2
(k2 k2 JPyq +2 k26, U

By substituting in (46) we obtain

UgU (49)
K2 k2P 4+ AK2eU - — 22K 2 ™~ pg _
{( p) oA i qu(kz_kg)':qfflkzgruqq ”

U, U
=K% Uy + A2K42 Y 4 pg
pn r
g=np (kz _kg)qu +Zk25ruqq
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The equation which gives as k?is obtained by
making g = N and substituting C, =1

(k2 —k2k? =—26,k2U 1y + A2,k TcUpy  (50)

p#N

Using Cp from (42) we get

2
k2 =k? ,;LMJr (51)
nn

UpU

np~ pn

+/12ﬁz
P pxn( UV
K2 k2P, + K26 U py — K42 S 4°=pd
From the last development we keep only
the terms till the second order [8]

grkZUnn 4 )2 “"rzk4 Z UnpU pn (52)

Pon Pop pzalk? —k2 P

By making A =1 we obtain the expression of the
dielectric permittivity corresponding to the resonance
frequency for which we make the determination by
solving the second order equation

k?=k2-2

uU..U f2 53
P +5Unn'{1_pJPnn:0 (53)

2
—g2y e 5
p#n fp
{1_f2]Ppp
We consider the particular case of a rectangular

resonant cavity having the dimensions a, b and c. We
normalize the electric fields in the unperturbed cavity

a.T™M
1 . . .
E, =msm(kxx)sm(kyy)sm(kzz)
K.k, _ :
Ex =-————cos(kyx)sin(k,y)sin(k,z) (54)
Ku K
kyk, . :
Ey =—————sin(kyx)cos(k, y)sin(k,z)
Kum K|
b. TE
k
Ey =—2-cos(k,x)sin(k,y)sin(k,z)
Ke (55)
Ey :Eysin(kxx)cos(kyy)sin(kzz)
E
where

ky=mz/a,ky=nz/a and k, =pr/c.

ki = k2 +k2, k=1 k2 +k2 +k?

b
K = \/% [kxz(1+5no)+ K2(1+ 5m0)] (56)

abc | k2k? kyk? 57
KM :\/8|\ >|:|42 (1+5n0)+%(1+5m0)+(1+5p0) ( )

The method was tested by comparison with the
classical first order perturbations method for a rectangular
cavity having the dimensions 21.2 x 12.1 x 203 mm and
which is oscillating on the fundamental mode. The sample
was a dielectric parallelepiped introduced there where the
electric field is maxim. We observed the frequency
deviations for the fundamental mode and for other five
superior modes. The comparative results obtained at the
INFIM Institute, Bucharest, Romania, are presented in
Table 4.

Table 4. Comparative results for the second order
perturbation method

Sample 1% order perturbs. | 2" order perturbs.
dimensions (mm) g; 8}
11x11x121 36.3 36.5
14x14x%x12.1 36.9 36.3
19x19x12.1 38.3 36.2

5. Conclusions

The most important relations used in the classical
“small perturbations method” and in the new “second
order perturbation method” are presented.

The values of the permittivity obtained in our
experiments are in good agreement with the values from
the literature (catalogs and papers).

The maximum range of errors obtained from the
calculus relations is 4+7 %. These small values are good
arguments that the cavity small perturbations method is a
very suitable method for the measurement of the dielectric
relative permittivity at microwave frequencies for
dielectrics with small losses.

The most important factor that influences the error is
the sample radius r. The others factors: frequencies,
dimensions of the cavity and quality factor determine
errors which could be ignored compared with the errors
given by measurement errors of the sample radius.

For samples with high permittivities or large size the
second order perturbation method gives better results.
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