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The cavity perturbation method for the measurement of 
the relative dielectric permittivity in the microwave range  
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The cavity (small) perturbation is a very suitable method for the measurement of the dielectric relative permittivity at 
microwave frequencies. In this paper we give the most important relations of this method, particular relations for rectangular 
resonant cavities and some experimental results. Also, an analysis of total relative errors and the second order 
perturbations method are presented. 
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1. Introduction 
 
The perturbation of resonant cavities may be achieved 

by the modification of the volume (shape perturbations) or 
by the introduction of small pieces of dielectric or 
ferromagnetic material (material perturbations). In the 
case of dielectric measurements, the second way is 
applied. Consider that a original cavity (Fig. 1a) is 
perturbed by a change in the permittivity or permeability 
(Fig. 1b).  

The change of the resonant frequency of the perturbed 
cavity due to material perturbation is given by the relation 
[1], [2], [3] 
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where: 1111 ,,, µωHE
rr

 and 1ε  characterize the unperturbed 

cavity; ,,, 222 ωHE
rr

 µ∆+µ=µ 12  and ε∆+ε=ε 12  
characterize the perturbed cavity.  

This relation is an exact equation for the change in 
resonant frequency but it is not a very usable form since 
we generally do not know the exact fields 22 , HE

rr
 in the 

perturbed cavity. In the case of measurements a lot of 
approximations were proposed. The most spread 
approximation considers very small material samples 
compared with the cavity volume; in these cases we have 
small perturbations of the cavity. 

In this work we are dealing with very small dielectric 
samples. Therefore we can consider that the measurement 
method is based on small perturbations of the resonant 
cavity. 

Cavity perturbation measurements can be highly 
accurate and are particularly advantageous in the 
determination of relative permittivity of dielectrics with 
small loss tangents. Perturbation techniques permit the 
measurement of dielectric samples of small sizes and 
various shapes. The most convenient of the shapes are the 
spheres, rods, discs and slabs. 

 

2. Approximations for thesmall perturbations  
    of the resonant cavity 
 
In our paper we consider that the first cavity 1 is 

empty ( 01 µ=µ  and 01 ε=ε ) (Fig. 1a) and the volume SV  
of the sample is very small compared with the volume CV  
of the cavity (Fig. 1b), therefore we can assume that 

12 EE
rr

=  and 12 HH
rr

=  in the integrands of denominator 
of eq. (1).Under these conditions this equation can be 
rewritten as follows 
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where the integrands of the denominator become 
2

1E
r

and 
2

1H
r

 respectively, and the resonance equality  
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was used. The integrations in the nominator of eq. (2) are 
performed only over volume SV  of the sample since in the 

cavity 2 we have 02 µµ =  and 02 εε =  except the 
small volume SV . 
 

 
 a    b 
 

Fig. 1. a- empty cavity; b- introduction of the dielectric  
                                        sample. 
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When the sample is assumed non-
magnetic, 02 µµ = , the second term of the nominator in 
eq. (2) drops out and we obtain 
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where: 022r εεε = is the relative (complex) dielectric 

permittivity of the sample; 1E
r

 is the field in the empty 

(non-perturbed) cavity; 2E
r

 is the field in the sample and 
is determined by the shape and the size of samples. 

Generally the empty cavity and dielectric materials 
have losses. Therefore the angular frequency ω  
associated with a dissipative system is a complex quantity 
and can be written as [4] 

JR jωωω +=                               (5) 

and the overall quality factor TQ  is defined as 
 

J

R
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Consider the expression 
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where: both 1ω  and 2ω  are complex in the sense of eq. 

(5); 2R1R ωω ≅  and RJ ωω << . On expanding 

ωδω  and taking into account these approximations, we 
have 
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where πωπω 2f,2f 1R1R2R2R == . 

Since 2TQ21 can be neglected compare with unity 
we can write 
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This equation provides the link between the measured 
quantities, Rf and TQ , and the theoretical expressions 

involving ωδω  which are considered in eq. (4). By 
substitution of eq. (9) in eq. (4) we obtain the small 
perturbation formula 
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If we consider a filling coefficient defined by the 
relation [3] 
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eq. (10) can be rewritten as follows 
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In almost all practical cases 2rε  is a complex 

quantity 2r2r2r jεεε ′′−′= , therefore we have 
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The filling coefficient may be determined if the fields 

in the cavities are known before and after the perturbation; 
also it may be determined experimentally using a sample 
with known 2rε ′  and 2rε ′′ .  
 
 

3. Particular results for the rectangular cavities 
 
3.1. Experimental setup 
 
The experimental setup is presented in Fig. 2. 

 
Fig .2. Experimental installation (Hewlett packard 
8714C 300KHz-3000MHz RF network analyzer). 

 
 

In our experiment we used the small perturbations 
method for a rectangular cavity, having the dimensions               
a = 5.8 cm, b = 2.5 cm and c =9.16 cm and which is 
oscillating on the TE101 mode at 3GHz.  The cavity, which 
initially was empty 01 εε = , is perturbed by the 
introduction at x=a/2, z=b/2 and y=0÷b of a cylindrical 
dielectric sample having the radius r and relative dielectric 
permittivity 2rε . After the perturbation the oscillation 
mode and the field lines are unchanged but the resonance 
frequency fr and the quality factor Q decrease. 
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3.2. The permittivity expressions  
 

The electrical field for the TE101 mode has only one 
component [4] 
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where E0y is a real constant depending on the applied 
signal  

Assuming that the electrical field inside the dielectric 
sample ( 12 EE = ) is constant 

y0y01 jE
2

sin
2

sinjEE −=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

ππ
        (15) 

the filling coefficient (11) becomes     
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Therefore, for the complex permittivity we have 
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3.3. Experimental results 
 
Some experimental results obtained from the 

measurements of some usual materials used in the 
microwave range and some epoxy resins are presented in 
Table 1 and Table 2. 

 
Table 1. Results obtained for some usual materials  

(resonance frequency fr=3GHz). 
 

Sample Empty 
cavity 

Teflon 
(PTFE) 

Methacrylate 
(PMMA) 

Erthalon 
12 

Eralyte 
TX 

PVC 
Ivory 

Radius 
(mm)  2.5 2.5 2.5 2.5 2.5 

N 0 0.0148 0.0148 0.0148 0.0148 0.0148

rε ′  1 2.05 2.50 2.94 2.78 2.61 

rε ′′  0 0.0003 0.0005 0.060 0.0006 0.020 

 
Table 2. Result obtained for some epoxy resins 

(resonance frequency fr=3GHz). 
 

Sample Epoxy  
resin 

+ 
Polyurethane 

Epoxy  
resin + 

 Triethylene- 
tetrachloride-

amine  

Epoxy 
 resin + 

Bismaleimide 
C21H14N2O4 

Epoxy  
resin  

+ 
Diaminodiphenyl-

methane 
C13H14N2 

Radius 
(mm) 1.45 1.45 1.45 1.45 

N 0.005 0.005 0.005 0.005 

rε ′  3.12 3.24 3.10 3.26 

rε ′′  0.205 0.21 0.14 0.208 

The values of the permittivity obtained in our 
experiments are in good agreement with the values given 
in the literature (handbooks and papers). In Table 3 are 
presented the catalog values [6] of the permittivity of 
some materials that we used in our experiments. 
 
 

Table 3. The catalog values for some material used in our 
experiments. 

 
Sample Teflon 

(PTFE) 
Erthalon 

12 
Methacrylate 

(PMMA) 

rε ′  in reference [6] 2.0÷2.1 2.9 2.6 

rε ′  in our experiments 2.05 2.94 2.5 

 
 

3.4. Relations for the calculus of total relative  
        errors  
 
Applying the logarithm to the relation (17) and 

separating the terms we obtain  
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Calculating the differential of this relation we have 
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Using that r2r1 ff > , we pass to finite differences   
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Because 
 

,21 fff rr ∆=∆=∆ the measurement errors are the same 
for each frequency                                                         (22) 

 
 the expression (21) becomes                       
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The measurement errors for the cavity dimensions are 

cmmca 24 1010 −− ==∆=∆  (a = 5.8 cm, and                    
c = 9.16 cm) which means that the terms containing the 
dimensions of the cavity give errors which are smaller 
then 0.002; therefore they can be ignored 
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Using a HEWLETT PACKARD 8714C 300 KHz – 

3000 MHz RF NETWORK ANALYZER the 
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measurement error for frequencies is MHzf 310−=∆ , 
MHzff rr 300021 ≅ and MHzff rr 2021 ≅− . This means 

that the approximate value of the second right term in eq 
(24) is 10-3 - 10-4 and we can ignore this term compared 
with the first one.   
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In order to calculate the relative errors for the 
imaginary part of permittivity we apply the logarithm to 
the relation (18), and separating the terms we have 
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If we calculate the differential of the last relation, we 

obtain 
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Using that 21 QQ >  and passing to finite differences 

we have  
 

2

2

21

1

1

1

21

2

2r

2r
Q
Q

QQ
Q

Q
Q

QQ
Q

c
c

a
a

r
r

2
∆∆∆∆∆

ε
ε∆

−
+

−
+++=

′′
′′   (28) 

The quality factor is given by 
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r
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f
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where: rf  is the resonance frequency; df  is the right 

frequency and sf  is the left frequency at dB3−  
attenuation of the resonance curve.  

We apply the logarithm and separate the terms  
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we have 
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Using the inequality sd ff >  and considering that 
the measurement errors are the same for all frequencies 
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Thus, relation (28) becomes 
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The measurement errors for the cavity dimensions are 

cm10m10ca 24 −− === ∆∆  (a = 5.8 cm, and      
c =9.16 cm); this means that the terms containing the 
dimensions of the cavity give errors which are smaller 
then 0.002 and so they can be ignored 
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As specified above, the measurement error for 

frequencies is MHzf 310−=∆ , 
MHzff rr 300021 ≅ and MHzff sd 10≅− . This means 

that the approximate value of the second and third right 
terms in eq. (34) is 10-3 - 10-4 and we can ignore these 
terms compare with the first one   
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In our experiments the measurement error of the 
sample radius is mm05.0r =∆  and the radius of the 
samples is mm5,245.1r ÷= . This means that the 
maximum value of the total measurement error for the 
complex permittivity is about 4÷7 %. 
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The maximum total measurement error decreases 
when the radius of the sample increases. Increasing the 
radius means that also the filling coefficient N increases. 
The superior limit for N is 0.1 because above this value 
the approximations made for the small perturbations 
method are no more correct. 

 
4. The second order perturbation method 
 
The conventional small perturbations method 

presented in the previous sections is applicable only when 
the sample determines a small perturbation of the cavity 
field. Sometimes the material is very fragile and the 
technological obtaining of the samples with small 
dimensions is very difficult. In this section we will present 
a method for the determination of the dielectric 
permittivity with smaller errors by taking into account the 
superior modes in a second order perturbation formula [7]. 
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We consider an ideal resonant cavity of a certain 
shape which is limited by the domain D. Using the time 
dependence )tjexp( ω− the unperturbed equation which 
characterize the intensity of the electric field for each 
mode is  

 

( ) 0Ek 22 =−∇ αα
r

                    (37) 
 

where α  is the mode number obtained by arranging the 
modes from small frequencies to high frequencies; αk  is 
the resonance wave number of the α  mode. 

We suppose that the resonance modes TE and TM in 
the cavity are orthonormate and orthogonal 
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 Generally we consider that mnmnnm PE,E δ=
rr

; 

1Pmn =  when the type of the resonance modes is the 
same. 

If the cavity is perturbed by the introduction of a 
dielectric sample limited by the domain 1D  and having 

the dielectric permittivity rε  the resonance equation 
becomes 
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where k is the resonance wave number of the perturbed 
cavity, λ  is a perturbation coefficient used for the 
visualization of the perturbation order and  
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The electric field of the perturbed cavity can be 

developed in function of the orthogonal intensities of the 
electric field for the unperturbed cavity 
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Using booth resonance equations we can write 
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Multiplying the last relation by βE
r

 and integrating 
over the volume of the cavity we obtained the equation for 
the determination of field amplitude 
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where ( ) βααβ χ ExEU
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=  and αc  are the unknown 

coefficients. 
To solve the last system of equations we must cancel 

out the determinant 
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   The development of the last determinant is difficult 

and in order to solve equation (43) we use an iterative 
method. If the perturbation is removed we suppose that the 
solution reduce to nE

r
 and 1cn = . Separating the term 

corresponding to the unknown coefficient pc  we obtain  
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In order to develop a method of successive 

approximations we must write the equation for the 
determination of qc . To avoid the repetition we separate 
the terms in p and n  
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Till now no approximations were done. The solution 

of last equations is obtained by eliminating the sum from 
the Nth equation, solving this equation for Nq  and 
introduction of the result in the (N-1)th equation. For 

3N =  we eliminate the sum from (46) and we find  
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By substituting in (46) we obtain 
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The equation which gives as 2k is obtained by 
making nq =  and substituting 1cn =   
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Using pc  from (42) we get 
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 From the last development we keep only 
the terms till the second order [8] 
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By making 1=λ  we obtain the expression of the 
dielectric permittivity corresponding to the resonance 
frequency for which we make the determination by 
solving the second order equation 
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We consider the particular case of a rectangular 
resonant cavity having the dimensions a, b and c. We 
normalize the electric fields in the unperturbed cavity 
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b. TE 
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where  
c/pkanda/nk,a/mk zyx πππ === . 
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The method was tested by comparison with the 
classical first order perturbations method for a rectangular 
cavity having the dimensions 21.2 x 12.1 x 203 mm and 
which is oscillating on the fundamental mode. The sample 
was a dielectric parallelepiped introduced there where the 
electric field is maxim. We observed the frequency 
deviations for the fundamental mode and for other five 
superior modes. The comparative results obtained at the 
INFIM Institute, Bucharest, Romania, are presented in 
Table 4. 

 
 Table 4. Comparative results for the second order  
                          perturbation method 

 
Sample 

dimensions (mm) 
1st order perturbs. 

rε ′  
2nd order perturbs. 

rε ′  
1.1 × 1.1 × 12.1 36.3 36.5 
1.4 × 1.4 × 12.1 36.9 36.3 
1.9 × 1.9 × 12.1 38.3 36.2 

 
 

5. Conclusions 
 
The most important relations used in the classical 

“small perturbations method” and in the new “second 
order perturbation method” are presented. 

The values of the permittivity obtained in our 
experiments are in good agreement with the values from 
the literature (catalogs and papers). 

The maximum range of errors obtained from the 
calculus relations is 4÷7 %. These small values are good 
arguments that the cavity small perturbations method is a 
very suitable method for the measurement of the dielectric 
relative permittivity at microwave frequencies for 
dielectrics with small losses.  

The most important factor that influences the error is 
the sample radius r. The others factors: frequencies, 
dimensions of the cavity and quality factor determine 
errors which could be ignored compared with the errors 
given by measurement errors of the sample radius. 

For samples with high permittivities or large size the 
second order perturbation method gives better results.  
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