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An extension of lubrication approximation from pure liquid systems to binary mixtures is presented. The method permits to 
reduce the dimension of the equation system by one. To apply the model for binary mixtures an extra term related to the 
Soret effect is added to the thin film equation. This assures the coupling between the film height and the concentration field. 
An equation for the concentration is considered in order to describe the mass conservation. 3D fully non-linear simulations 
were done. According with the linear stability diagram one obtains monotonic or oscillatory instabilities, depending on the 
control parameters. We demonstrate the appearance of typical structures such as static or soliton like traveling drops. 
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1. Introduction 
 
Thin liquid mixture films, most notable polymeric, 

lying on a solid flat substrate have widespread 
technological applications like coating and wetting 
processes. Consequently the interest in the study of 
instabilities occurring in such mixtures is increasing from 
both experimental [1-3], and numerical [4-6] point of 
view. For thick liquid layers an approach using Navier-
Stokes, heat and mass conservation equations coupled by 
adequate boundary conditions is suitable [4]. The upper 
film surface is considered nondeformable and usually 2D 
simulations are performed in this case, 3D simulations 
being time-consuming. In order to allow free upper film 
interface and to simplify the mathematical model appears 
the idea to consider for these thin films an approximation 
similar to the lubrication approximation [7] which includes 
the Soret effect. In this case, one eliminates the velocity 
field from the thin film equation, and one reduces the 
dimension of the problem by one. Thus 3D simulations 
become reasonable because in fact it rests to solve 
numerically a 2D problem. 

In the present paper we consider the case of a thin 
liquid mixture layer heated from below (Fig. 1). Our aim is 
to use the lubrication approximation for describing this 
system. Simulations using such a model were performed 
also for systems of two stacked ultrathin layers of different 
immiscible liquids on a solid substrate [8]. The results 
show interesting zigzag and varicose modes, but no 
oscillatory behavior was found. We will show that in our 
case the Soret effect is able to trigger such an oscillatory 
behavior. 

For many liquid mixtures the surface tension depends 
on temperature and on concentration [9,10]. If a small 
inhomogeneity appears somewhere along the liquid 
surface, a temperature difference between the high and 
low regions appears. This leads to a mass flux due to the 

surface tension gradient. Due to the Soret effect a 
concentration gradient is observed which will induce in 
turn a mass flux. The interesting case is when the flux due 
to the temperature gradient destabilizes the system. This 
case was studied for pure liquids and it was found that 
only monotonic instabilities can develop. Depending on 
the system parameters, the flux due to the concentration 
gradient can have a destabilizing or a stabilizing effect. 
The first case corresponds to a positive value of the 
Marangoni separation ratio [4] and don’t differ drastically 
from the case of pure fluids. The same behavior is found 
for small negative value of the separation ratio. For higher 
negative values the strength of the second flux is high 
enough to generate an oscillatory behavior of the system. 

 
a 

 
b 

Fig. 1. (a) System sketch: on a solid substrate lies a 
binary mixture thin liquid film with free upper surface. A 
temperature gradient T0>T1 is maintained between the 
lower  and  upper  surfaces; (b)  stability diagram for the  
   considered system computed from the linear problem. 
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2. Model 
 
We derive the film equation system taking as starting 

point the thin film equation from the lubrication 
approximation [7]: 
 

( )2 3 2
2 2 2 2

1 1 1
2 3t Z H

H H H Hσ σ
µ =

⎡ ⎤∂ = − ∇ ⋅ ∇ − ∇ Θ − ∇ −Π⎢ ⎥⎣ ⎦
      (1) 

 
Where 2 x yi j∇ = ∂ + ∂

r r
 denotes the horizontal gradient, H 

is the liquid height, µ - the fluid dynamic viscosity,                 
σ  - the surface tension, Θ - the potential of the 
conservative body force and Π the external force. In our 
case we consider that the conservative force is the 
gravitational one and the external force is caused by the 
long-range intermolecular interactions between the flat 
solid substrate and the liquid surface. In this case one can 
take 

z h
gHρ

=
Θ =  and ( )36A Hπ′Π =  [7]. A′ is the 

Hamaker constant and is negative for a positive disjoining 
pressure (interfaces repel each other). One also supposes 
that the surface tension is a linear function on the 
temperature and concentration: 
 

 T Nd dT dNσ σ σ= − −                       (2)  
where usually 0Tσ >  and the sign of Nσ  depends on the 
components of the mixture. The term 2σ∇  from equation 
(1) will be replaced by 2 2T NT Nσ σ− ∇ − ∇ . This assures 
in the thin film equation the coupling between the film 
height and the concentration field. One introduces the 
concentration as a new variable and adds a supplementary 
equation, the mass conservation for the dissolved 
component. We use the linear relation [11]: 
 

( )t N TN D N Tβ β∂ = ∆ + ∆                    (3) 
 
where 1 0T T Tβ = −  and 1 0N N Nβ = −  are the 
temperature and concentration gradients in the non-
disturbed state and D  is the diffusion coefficient. One 
considers the following no dimensional variables: 
 

03
t t

H
σ
µ

′ = , 
0

1( , , ) ( , , )x y h X Y H
H

= , 0

N

N Nn
β
−

=  (4) 

 
and one assumes that the temperature is a linear function 
on the vertical coordinate 0 TT T hβ= + . The 
concentration gradient induced by the Soret effect is an 
almost linear function on z , so that we can drop the 
second derivative in vertical direction. Therefore one 
replaces ∆  by 2∆  in the relation (3). 

The equation system after dropping primes for time 
and indices “2” at ∆  and ∇  becomes: 
 
 

( )

( )

2 3
3t

t

Ah Mh h n h h Gh
h

n L n h

χ
⎧ ⎡ ⎤⎛ ⎞∂ = −∇ ∇ + ∇ + ∇ ∆ − −⎪ ⎜ ⎟⎢ ⎥⎝ ⎠⎨ ⎣ ⎦
⎪ ∂ = ∆ − ∆⎩

    (5) 

 
After rescaling appear in the above equation system 

the following nondimensional parameters: 
3
2

TM σ β
σ

= − - rescaled Marangoni number, 

( ) ( )N N T Tχ σ β σ β=  - Maragoni separation ratio, 
2
0G gHρ σ=  - rescaled Galileo number, 

( )2
06A A Hπ σ′=  - rescaled Hamaker constant, and 

03L D Hµ σ=  - rescaled Lewis number.  
 
 
3. Numerical results 
 
We begin our study by performing a linear stability 

analysis of the problem taking all the perturbations of the 
form exp( )exp( )t ik rλ − ⋅

r r
. Fig. 1b shows the results for 

0.03L = , 0.02A = − , 0.0G = . One can see, there are 
three different behaviors in the early development phase: 
for small values of the modified Marangoni number an 
instability can not develop and a conductive state of the 
system is acquired (Fig. 3a), for positive or small negative 
values of χ  a monotonic instability is developed (Fig. 
3b). In the case of higher Marangoni numbers and big 
enough negative separation ratios oscillatory instabilities 
develop (Fig. 3c). 

For the fully nonlinear simulations we have 
considered a 3D system with periodical boundary 
conditions. In fact we compute h(x,y)  and n(x,y)  only at 
the liquid surface, so that we will have to solve 
numerically a 2D problem. We consider a mesh of                   
128 × 128 points in the xOy  plane and we use a semi-
implicit method: the linear part is computed using fast 
Fourier transforms and, in order to increase the speed of 
the algorithm, the non-linear part is computed using 
appropriate expressions for the derivatives in the finite 
differences method. All three behaviors from the linear 
stability analysis are found also in the non-linear 
simulations. We have performed simulations 
corresponding to the following points from Fig. 1: 

0.08M = , 1χ = −  - conductive case, 0.3M = , 
0.01χ = −  - monotonic case, 0.3M = , 1χ = −  - 

oscillatory case. Fig. 2 shows the real part of the growth 
rate ( )Re λ  as function of the wave length, computed for 
the linear problem. We have to mention that in the regions 
where the two solutions are superposed one has also an 
imaginary part of the growth rate. If there exists a positive 
real part, an instability can develop for the corresponding 
wavelength in the early state. If to this positive region 
corresponds non zero values of the imaginary part then the 
instability is oscillatory. Otherwise one has a monotonical 
instability. 
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Fig. 2. Growth rate versus wave number computed in the 
linear approximation with different parameters values 
for   three   cases:  (a)  conductive   state;  (b)  monotonic  
                    instability; (c) oscillatory instability. 

 
 

The nonlinear simulations show in these cases the 
same behavior as predicted by the linear investigation. For 
all the parameter values corresponding to points on the 
conductive region from Fig. 1 all initial small 
perturbations are very fast suppressed. For the case 
corresponding to Fig. 2b one obtains at the beginning an 
amplification of the perturbations with the wavelength 
corresponding to the maximum of the growth rate. 
Afterwards a coarsening process appears and in the final 
state of the system turns up a single static drop. 

More interesting is the case of oscillatory instability. 
Snapshots from 3D simulations are presented in Fig. 3. 
The gray value of the regions is proportional with the local 
film weight. The concentration is shown by mean of 
contour lines. The initial state is a uniformly distributed 
layer. In the early stage a number of drops are rapidly 

formed (see Fig. 3a). The drops start to move in randomly 
directions. The drop movement is driven by the 
concentration field: the direction is from higher to lower 
concentration regions. In the mean time a coarsening is 
established and the number of drops is decreasing (Fig. 3b) 
until one single soliton like traveling drop rests in the 
system (Fig. 3c). 
 

 
a 
 

 
b 
 

 
c 

 
Fig. 3. Time series for the case of oscillatory behavior 
(same parameters as in Fig. 2c). White correspond to 
elevated regions of the free surface. Contour lines 
represent the concentration field. The drops are moving 
towards low values of the concentration (white lines). 
For  exemplification,  the  final  drop  near  the   up-right  
        corner in figure (c) is moving downwards. 
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4. Conclusions 
 
In summary, we developed a model based on the 

lubrication approximation for very thin liquid binary 
mixtures with Soret effect. Linear analysis prediction for 
the system was confirmed by the 3D fully nonlinear 
simulations for a wide range of parameters values. We 
have found that the Soret effect can dramatically change 
the system behavior and can lead to oscillatory behavior 
for specifically parameters values. In the late stage of the 
temporal evolution static drops or traveling soliton like 
drops are obtained. 
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