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A collection of methods is presented for describing Marangoni convection in two-layer systems in the phase field formalism. 
The models consist of the Navier-Stokes equation with an extra term of phase field, the heat equation, and a spatiotemporal 
evolution equation for the phase field. In this theoretical description the fluid-fluid interface becomes diffuse and free of 
interface conditions. 2D convective patterns are shown for incompressible, compressible, and compressible evaporating 
fluids. 
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1. Introduction 
 
The study of simplified models is an important part of 

the search for more general and systematic theories of 
complex systems with multi-interfaces. The phase field 
models treat thermodynamically multi-phase systems with 
complicate and involved time-dependent interface 
geometries by tackling the problem continuously, 
inclusive of the interfacial region. This continuous 
variation is realized with an additional phase field which 
contains information about the local state of the system 
composition. With the help of this field one can 
continuously express− from one medium to the other − all 
the system parameters: density ρ , viscosities η , λ , heat 
capacity c , thermal conductivity κ . In this way the basic 
equations are written only once for the whole system and 
the explicit interface conditions are eliminated. Proposed 
for the first time by Langer in an ad hoc manner, the phase 
field methodology has recently achieved considerable 
importance in modeling solidification phenomena [1-3] 
and crystal growths [4,5]. In fluid media the diffuse 
interface model was used for studying the spreading of 
thin liquid layers on a solid surface [6] or the phase 
separation near the liquid-gas critical point [7]. We extend 
this model to another problem with material interface: the 
Marangoni convection induced by thermo-capillary effect 
in immiscible liquid-gas systems with external heating. 2D 
numerical simulations will be reported for incompressible, 
compressible, and compressible evaporating fluids far 
from criticality. 

 
2. Model 
 
For immiscible liquid-gas superposed layers the most 

natural phase field function is the density (scaled here to 
the liquid density), assumed to be 1ρ =  for the liquid 
phase and 0ρ =  for the gas phase. We introduce the 
contribution of the phase field in the classical form of 

Navier-Stokes equation by minimizing the free-energy 
functional for the equilibrium state. The Helmoltz free-
energy functional is given by: 
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with ( )0f ρ  the free-energy density of an homogeneous 

fluid far from interface. For ( )0f ρ  a continuous function 
of density is required with two symmetrical minima: one 
corresponding to 1ρ = , for the bulk in the liquid state, 
and another one to 0ρ = , namely for the bulk in the gas 

phase. We choose ( )0f ρ  in the following form: 
 

 t=25s 
 

  t=75s   t>4750s 

 
Fig. 1. Time series for the stream-function in the surface-
tension-driven instability. The plots follow from the 
model 1 and correspond to a silicon-oil-air system 
heated from below.  The  contour  lines  in the third panel  
              mark the reaching of the saturation state. 
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To describe situations in the presence of interfaces the 

free-energy functional is generalized by including gradient 
contributions to the total internal energy. The second term 
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in (1) describes the interfacial energy and contributes to 
the free-energy excess of the interfacial region which 
defines the surface tension coefficient [8]: 

 

∫
∞+

∞−
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= dz
z

K
2

0ρσ                            (3) 

( 0ρ  denotes the density profile in the stationary state). 
Surface tension effects are incorporated into the model 
through a modified stress tensor in the Navier-Stokes 
equations. So, applying the Lagrangian formalism for 
minimizing the free-energy functional (1) one finds out in 
Navier-Stokes equation a supplementary term of phase-
field. This supplementary term represents − in the frame of 
phase-field formalism − the substitute of classical 
interfacial conditions for the stress balance (for more 
details see [9]): 
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r
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The pressure term p  is connected to the free-energy 

density via the thermodynamic relation: 
/p f fρ ρ= ∂ ∂ − . We intend to describe with our model 

the Marangoni convection driven by the surface tension 
gradient (so-called thermo-capillary effect). In this aim we 
have to assume K  as a function of the temperature 

TK K K T= − , ( 0TK > , 0TK K<< ). Thus, the 
theoretical description has to be completed by the heat 
equation for the temperature field and by the continuity 
equation for the density. 
 

3. Simulations 
 
Model 1: incompressible fluids with rigid interface. 

The most simple model assumes both fluids being 
incompressible which implies: 0v∇ ⋅ =

r
. In this case we 

introduce the stream function ( , )x zψ  in place of the 

velocity field ( , )v x zr
: ( ) ( )/ /v z i x kψ ψ= ∂ ∂ − ∂ ∂

rrr
, fact 

which will essentially simplify the analytical and the 
numerical computations. For the stationary motionless 
state, the Navier-Stokes equation (4) with the symmetrical 
“double-well” potential given by the relation (2) admits 
the analytical solution: 

 
( )0 ( ) 1/ 1 exp ( 1) / / .z z K Cρ = ⎡ + − ⎤ ∝⎣ ⎦l l    (5) 

 
For small enough values of l  the above solution 

describes the system geometry: two superposed liquid-gas 
layers with the liquid boundary at 0z = , the gas boundary 
at 2z = , and the diffuse interface around 1z = . The 
fluids being incompressible and the interface rigid, the 
system configuration given by the relation (5) doesn’t 
change, that means we don’t need in this model a 
spatiotemporal evolution equation for the density. Starting 
from an initial random pattern we show in Fig. 1 some 

two-dimensional ( , )x z  snapshots for the stream-function 
till formation of the convective pattern and reaching of the 
saturation state. Although explicit interface conditions 
were not imposed in our formalism, one remarks in Fig. 1 
the appearance of the liquid-gas interface in an early stage 
of evolution at t = 75 s. Concomitantly two convective 
motions develop: one in the liquid and the second one in 
the gas, when the gradient temperature exceeds a critical 
value. 

 

 
                           a                                           b 
 

 
c 

Fig. 2. Temperature perturbations (panel (a)), stream-
lines and density perturbations (panel(b)) induced by the 
thermo-capillary instability. Panels (a) and (b) illustrate 
two-dimensional (x, z) perturbation profiles and the 
panel (c) illustrates the density perturbation versus z in 
the rising liquid. The plots come from the model with 
compressible    fluids   and     deformable   interface   and  
    correspond to a water-air system heated from below. 

 
Model 2: compressible fluids with deformable 

interface. A more realistic model considers the fluids 
compressible and the interface deformable. In this case no 
stream function exists. We compute the stream-lines 
directly from the velocity components and the 
spatiotemporal evolution of the density from the mass 
continuity equation. The panels from Fig. 2 illustrate the 
temperature perturbations, the stream-lines and the density 
perturbations for Marangoni convection driven by the 
thermo-capillary effect. The pictures from Fig. 2 are 
gathered after a long time interval when the saturation 
state is already achieved. With all these pictures done, one 
can explain now the trigger mechanism of this convective 
instability. So, increasing the temperature difference top-
bottom over a threshold − which depends on the system 
geometry− temperature patterns emerge in the whole 
liquid-gas system as shown in Fig. 2-a. The surface 
tension coefficient decreases usually with temperature so 
that at the liquid-gas interface turn up regions with lower 
and higher surface tension coefficient. Along the interface 
appear surface-tension-driven forces (called “Marangoni 
forces”) which push the fluid from regions with lower 
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surface tension (light regions in Fig. 2-a) to regions with 
larger surface tension (dark regions in Fig. 2-a). In this 
way above and below the interface cellular rolls arise as 
one can see in Fig. 2-b. Fig. 2-c plots the density 
perturbations 1ρ  (against z ) caused by the surface-
tension-driven instability in the rising liquid. Convection 
in liquid pushes the liquid against the interface which 
leads to an increase of the density at the interface on the 
liquid side. The advection of gas from the top plate creates 
a lower density at the interface. Consequently two peaks 
appear in 1( , )z ρ  representation given by Fig. 2-c, which 
are asymmetrical because the density in the liquid is much 
larger than the density in the gas state. 

 
Model 3: compressible evaporating fluids. We 

include now in the previous model 
evaporation/condensation phenomena in the interfacial 
region. The double-well potential (2) which describes the 
free-energy density has to become now asymmetrical in 
the disturbed states of the two-layer system. In this way 
one of the phases (liquid or gas) becomes locally more 
stable than the second one, fact which allows for 
interfacial mass exchange between the two phases. We 
model this relative vertical shift of the minima (of the free-
energy density) by adding in the relation (2) a 
supplementary term: 

 
( ) ( ) ( ))()1(, 00 zTTrfTf −−+= ρρρ         (6) 

 
where ( )0T z  represents the temperature distribution of 
the system in stationary conditions and r  is a bias 
parameter related to the specific latent heat L  (for more 
details about this model see [10]). 

On the other side in the classical heat equation has to 
appear a supplementary term of phase field describing the 
jump of normal heat fluxes due to latent heat: 

( )dTc T L
dt t

ρρ κ ∂
= ∇ ⋅ ∇ +

∂
                  (7) 
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Fig. 3. Patterns for temperature perturbation in ethanol-
vapor system heated from below as it results from model 
3. The external heating is kept constant and the latent 
heat is increased: (a) L = 700  kJ/kg; (b) L = 3800 kJ/kg;  
                                   (c) L=4150 kJ/kg. 

We fix the temperature gradient far above the 
threshold and we change the latent heat varying r  and L . 
Fig. 3 plots the perturbated temperature field for ethanol-
vapor parameters corresponding to different L . 
Experimentally, the latent heat L  is modified by covering 
the liquid-vapor interface with different mono-layers 
surfactants. So, increasing the latent heat the number of 
the convection cells on the same lateral length decreases 
from 6 to 3. Actually, the change of the number of cells 
means a change of the excited mode in the liquid-vapor 
system. That reveals a phenomenon already 
experimentally confirmed [11]: far from threshold there 
appear interesting options to control the wavelength of the 
convective rolls by the latent heat. 

 
4. Conclusions 
 
In summary, we developed phase field models for 

Marangoni convection in two-layer systems with external 
heating. Starting from Lagrangian formalism we found out 
a supplementary term of phase field which has to be 
included in Navier-Stokes equation in order to substitute 
the boundary conditions from the classical models. Non-
linear simulations were shown coming out from models 
with incompressible and compressible fluids. Extending 
the phase field model to compressible evaporating fluids 
we analyzed the influence of the evaporation on the 
convective patterns. 
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