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Thermal parameters of a sample can be determined using photothermal measurement techniques and a theoretical model 
of modulated heat transport. This model is represented by a partial differential equation having a set of corresponding 
boundary and initial conditions. Unfortunately, it is not always possible to obtain the analytical solutions (useful to interpret 
the experimental results) and in this case, the solutions are obtained by numerical methods. We used a software based on 
the finite element method to analyze the heat conduction in such cases. The versatility of the method is shown by some 
examples illustrating the 1D and 3D heat conduction. A comparison with experimental results is presented. 
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1. Introduction 
 
When incident light is absorbed by a material, the 

resulting heat generation leads to so called photothermal 
(PT) phenomena. Along with the increasing possibilities of 
laser light generation, PT phenomena have been 
investigated and exploited more and more for material 
characterization. Photothermal techniques have been 
established for many years as a tool for non-destructive 
evaluation of material properties [1]. Briefly, the common 
working principle of conventional photothermal 
techniques is based on the study of the periodic 
temperature distribution, i.e., the thermal wave, produced 
in a given sample as a result of heating due to an intensity 
modulated pump laser source impinging on the surface. 
Thermal waves inside a homogeneous sample diffuse over 
a characteristic distance, which is given by the thermal 
diffusion length (it depends on the thermal diffusivity α 
and the modulation frequency f, µ = (α/πf)1/2 ) [2]. During 
the last few years, photothermal techniques have been 
used in a wide variety of fields including material science 
[3-5], agriculture [6], medical and environmental sciences 
[7].  

The continuous reduction of the size of semiconductor 
devices is associated with an increase of the dissipated 
power densities. Therefore thermal aspects have received 
increasing attention in the semiconductor technology. To 
detect and to control local heat dissipation or local thermal 
defects, which could lead to overheating effects, 
experimental techniques for monitoring temperature and 
thermal properties with a high spatial resolution are 
required. Such techniques are scanning thermal 
microscopy – SThM, and scanning thermal expansion 
microscopy – SThEM, for measuring the thermal structure 
at micro- and nanoscale [8,9].  

To extract from experimental data the unknown 
thermal properties of the investigated sample, the 
normalized measured values (phase and amplitude) are 
correlated with the results of theoretical approximations. 
From theoretical point of view, the problem of modulated 

heat conduction is a mathematical model of a physical 
situation. This model is represented by a partial 
differential equation having a set of corresponding 
boundary and initial conditions. The analytical solution of 
this equation has two parts: a homogeneous part (provides 
information regarding the natural behavior of the system: 
thermal conductivity, diffusivity, etc.) and a particular part 
(describes the disturbance in the system: heat generation, 
temperature difference in a medium, etc.). This solution 
can be obtained only in some particular cases: simple 
geometry of the sample and in general the case of 1D heat 
conduction [10] specific to high modulation frequency. At 
low modulation frequency it must be considered the 
gaussian form of the laser beam and the fact that heat 
propagation has a 3D dimension. In this case and for 
complex systems, the heat conduction equation can be 
solved only by numerical methods. 

There are two common classes of numerical methods 
used to solve such problems: finite difference method [11] 
and finite element method [12]. The advantage of finite 
difference method is that it is easy to understand and 
employ in simple problems, but it is difficult to apply to 
problems with complex boundary conditions (or for 
nonisotropic material properties). Due to the complexity of 
the thermal investigation techniques applied to analyze the 
heat dissipation in complex systems (like microelectronic 
devices) we propose the finite element method to 
investigate the harmonic heat transport.  

 
 
2. Theoretical model 

 
In photothermal radiometric (PTR) measurements 

(Fig. 1) the sample is irradiated with a modulated gaussian 
laser beam and the infrared radiation (amplitude and 
phase) emitted by the heated sample surface is being 
measured. 
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Fig. 1. Experimental set-up for PTR measurements. 
 
  
 
  
 
  
 
 
 
 

Fig. 2. Two-layer sample. 
 

The basic equation of heat conduction in an isotropic 
body with temperature dependent heat transfer is [13]: 
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where qx, qy, qz are components of heat flux, Q(x,y,z,t) is 
the inner heat generation rate per unit volume, ρ - material 
density, c – heat capacity. According to Fourier’s law: 
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with k – thermal conductivity, we obtain: 
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having: a) boundary conditions: specified temperature at 
the surface, specified heat flow on a surface, convection, 
radiation; b) initial conditions (for transient problem); c) 
continuity conditions of temperature and heat flux at the 
interface between different materials [10]. 

The expression of heat generation is given by: 
a) 1D case [14]:   
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where β is the optical absorbtion constant of the surface 
layer, η is the ratio of the intensity of the unreflected part 
of the radiation to the total incident intensity, I0 is the 
amplitude of the incident radiation and ω is related to the 
modulation frequency f of the intensity by ω = 2π f.  
       b) 3D case (axial symmetry – Henkel transformation) 
[15]:                
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The partial differential equation (Eq. 3) can be solved 
by considering the solution having two components, a 
stationary and a time-dependent one [15]. For the two-
layer sample in Fig. 2 (highly opaque and semi-infinite 
approximation for l2) the time dependent solution, at the 
surface, is: 

a) in 1D heat conduction model, valid at high 
modulation frequency: 
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R12 is the thermal reflection coefficient between the 
surface layer and the substrate, and is given by                    
R12 = (g12 –1)/(g12+1). The ratio g12 = e1/e2 represents the 
ratio of thermal effusivities and αi (i = 1,2) is the thermal 
diffusivity. 

b) in 3D heat conduction model, valid at low 
frequency and considering cylindrical symmetry  
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where  H

sTδ  represents the Henkel transform surface 
temperature, ( ))f(sqrt)f,( 2

1
2

1 σ+λ=λλ  and λ is the 
Henkel parameter. rH is the radius at which the Gaussian 
distribution of laser beam dropped to 1/e2 of its peak 
value. The complex surface temperature can be calculated 
by a inverse Henkel transform [15]. 

In both 1D and 3D cases, the analytical solution can 
be obtained only for simple systems (in this case a two-
layer model with uniform layer thickness). For samples 
with complicated geometries are necessary numerical 
simulations. 
 

3. Results and discussion 
 
To simulate the heat conduction we used the ANSYS 

software, based on finite element (FE) method. The FE 
method is a numerical technique for solving problems 
which are described by partial differential equations or can 
be formulated as functional minimization [16]. The 
domain of interest is represented as an assembly of finite 
elements connected by nodes. The results are nodal values 
of a physical field, which is sought. That means that a 
continuous physical problem is transformed into 
discretized finite element problem with unknown nodal 
values. Values inside finite elements can be recovered 
using these nodal values. The ANSYS software, based on 
this method, can do many types of simulations from 
thermal analysis, structural analysis, electromagnetic and 
so on.  

Briefly, the software is organized in two levels: the 
Begin level and  the Processor level (Fig. 3).  A typical 
analysis in ANSYS involves three distinct steps. In 
preprocessing step, using the Prep7 processor we provide 

l1 
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l2 
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to the software the data, such as: geometry and material 
properties of the sample, and we choose the element type. 
In the solution step, using the Solution processor we define 
the type of analysis, set boundary conditions, apply loads 
and initiate finite element solution. In postprocessing step, 

using Post1 (for static or steady state problems) or Post26 
(for transient problems) we can review the results of the 
analysis through graphical display and tabular listings 
[16].  

 

 
 

Fig. 3. ANSYS software organization. 
 

The main sources of errors that can contribute to 
incorrect results are: 

i) Wrong input data, such as physical properties 
and dimensions. Listing and verifying physical properties 
and coordinates of nodes and keypoints before proceeding 
any further with the analysis can simply correct this kind 
of errors. 

ii) Selecting inappropriate types of elements. This 
can be corrected only by understanding the underlying 
theory of the FE method and of the process, which will be 
modeled. 

iii) Poor element shape and size after meshing. The 
meshing is a very important part of the FE analysis. 
Inappropriate element shape and size will influence the 
accuracy of the results. 

iv) Applying wrong boundary conditions and loads. 
This is the most difficult aspect of modeling and requires 
good judgment and some experience. 

Before we use this software to interpret some 
experimental data we have to test its limits by comparison 
with an analytical solution. For this purpose we consider a 
simple case of 1D heat conduction: a two-layer sample (a 
thin surface layer deposited on a substrate, see Fig. 2) 
uniformly heated at the surface. The analytical solution at 
the surface has the expression given by Eq. (6). It is a 
complex expression characterized by amplitude and phase. 
This expression was obtained considering a semi-infinite 
approximation for the substrate. In Fig. 4 there are 
represented the analytical and numerical results for this 
case.  

The numerical results were obtained in different 
conditions (different meshing and substrate thicknesses). 
We can observe, especially from phase dependency, that in 
some frequency ranges, the numerical results are different 
from analytical solution:  

a) at low frequency, for too thin substrate even with 
high meshing; 

b) at high frequency for low meshing. 
That means that for those frequencies the element size 

was to big or the thickness of the substrate was to small. 
Because in ANSYS there is a limited number of nodes and 
elements that can be used, the questions are: (i) how small 
should be the elements, and (ii) how thick should be the 

substrate in order to obtain good results. The best solution 
is the one that uses the simplest model but which still 
approximates well the physical situation.  
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Fig. 4. Comparison between analytical solution and 
numerical simulation (amplitude and phase - 1D case) of  
                heat transport in a two-layer sample. 
 
 
To answer these questions we made some test 

simulations. First, we simulate the modulated heat 
transport in a bulk sample (sigradur, having a semi-infinite 
thickness from photothermal point of view) with a uniform 
heat flux at the surface (that means 1D case) for different 
meshing (different element size). We made these 
simulations at 10 Hz and considering the thermal 
properties of sigradur: ρ = 1420 kg/m3, c = 824 J/kg⋅K,            
k = 4.92 W/m⋅K.  
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Fig. 5. Normalized amplitude and relative phase versus 
element size for different depths from the surface of the 
sample   (x = 0, 1µ, 2µ, 3µ;   µ   is  the thermal  diffusion 
                                length at 10 Hz). 

 
At this frequency the thermal diffusion length for 

sigradur is µ = 3.65×10-4 m. The thickness of the sample 
was d = 6⋅µ = 21.9×⋅10-4 m. We compared the results 
(amplitude and phase) obtained at different depths in the 
sample for different element size (Fig. 5). For a better 
comparison we represented the normalized amplitude (at 
the value corresponding to smallest element size) and 
relative phase in function of element size (in thermal 
lengths units). The mesh refinement is optimal when there 
are no or little changes in the solution. From Fig. 5 it can 
be seen that for an element size smaller than µ/10 the 
errors are very small. In a simple thermal wave problem 
where the frequency-dependent amplitude and frequency-
dependent phase of the surface temperature are of interest, 
the model must be non-uniformly meshed from the top to 
the bottom of the sample with more mesh refinement 
beneath the sample surface. On the other hand, when we 
are interested to measure the thermal expansion of a 
sample, we must be care, also, at the element size in 
depths of the sample. And that is the reason for we made 
simulations at different depths in the sample. 

To answer the question about the thickness of the 
substrate we made some test simulations, at 10Hz, with an 
element size of µ/10 and we compared the results obtained 
at different depths in the sample (Fig. 6).  

From Fig. 6 we can conclude that for a thickness of 
about 2.5 – 3 µ, the sample can be considered as semi-
infinite (from phothermal point of view). That means that 
for a real case we have to consider distances of about 3 µ 
around the heat spot. This fact will increase the speed of 
simulation by minimizing the numbers of nodes involved 
in the differential equations and it allows avoiding the 
computation of too much data which are useless. 
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Fig. 6. Dependence by sample thickness of normalized 
amplitude  and  phase,  at  different  depths in the sample  
                               (x = 0, 0.2, 0.4, 0.6 µ). 

 
Considering these facts we simulate 3D heat 

conduction in a two-layer system. Good agreement with 
the analytical solution is obtained by adapting the 
geometry and the element size with the frequency.  

The last test of the software was a comparison with 
experimental data. Another phothermal technique used to 
investigate the thermal properties of the sample is the 
photopyroelectric technique. This detection method 
consists of measuring the temperature increase of a sample 
(excited by a modulated laser beam), by placing a 
pyroelectric transducer (sensor) in thermal contact with the 
sample [18]. If the sensor is placed at the rear face of the 
sample where excitation takes place, then the 
configuration is said inverse (front). Otherwise, the 
configuration is said standard (back).  

Using the front configuration we measured the 
thermal properties of an adhesive tape. On a side of a Cu 
bar of dimensions 60 × 10.5 × 12.5 mm3, we put an 
adhesive tape and a pyroelectric sensor (the adhesive tape 
make the contact between the sensor and the Cu bar) 
having the dimensions of 6.18 × 6.18 mm3. 

The thickness of the adhesive tape was 0.092 mm, and 
of the sensor 0.255 mm (Fig. 7). The pyroelectric sensor 
was irradiated with a modulated laser beam, having the 
radius of 1.5 mm. Because the system does not have an 
axial symmetry, we have to use a 3D modeling. We 
modeled a quarter of the sample and we made a uniform 
meshing in sensor and adhesive tape to have control on 
applying loads and read results (Fig. 8). In Cu bar we 
choose an automatic mesh, refined at the interface with the 
sample. 

 

 
 

Fig. 7. Geometry of the sample. 
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Fig. 8. The meshing used in ANSYS simulations for a  
                  quarter of the sample in Fig. 7. 

 
The comparison of numerical results with the 

experimental data are presented in Fig. 9, for amplitude 
and phase. 
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Fig. 9. Comparison between numerical simulation and 

experimental data in a direct PPE experiment. 
 

As it can be seen from Fig. 9, a very good agreement 
between numerical and experimental results was obtained. 
 

5. Conclusions 
 
In contrast to analytical solutions, which show the 

exact behaviour of a system at any point within the 
system, numerical solutions approximate exact solutions 
only at discrete points, called nodes. Despite this fact, if 
during the simulation we take into account all the 
theoretical and experimental aspects, we can obtain very 
good agreements between the numerical and experimental 
results. The main goal of this work was to test the limits 
and to demonstrate the versatility of ANSYS software in 
simulating modulated heat trasfer in photothermal 
techniques. Our results demonstrate that this software, 
based on FE method, can be applied with succes to 
investigate the heat transport in samples with complicated 
geometry. 

The advantages of FE method are: i) can handle 
complex geometry (the heart and power of the finite 
element method), ii) can handle complex analysis type 
(vibration, transients, nonlinear, heat transfer, fluids), iii) 
can handle complex loading (nodal, surface or volum 
loads, time or frequency dependent loads). 

The disadvantages are: i) a powerful computer and 
reliable FEM software are essential; ii) input and output 
data may be large and tendious to prepare and interpret; 
iii) susceptibility to user-introduced modeling errors (poor 
choice of elements type, distorted elements, geometry not 
adequately modeled). 
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