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The Aslamasov-Larkin contribution of the excess-conductivity, calculated within the Lorentz-Doniach model shows that a 
crossover from 3D to 2D dimensionality is taken place at about 110.41K for our bulk monophase (Bi, Pb)-2223 samples. A 
bending of the log-log curves from 2D behavior through those of SWF (short wavelength fluctuation) behavior was also 
observed at a temperature about 135.43K (far from Tcm). The theoretical fits are also consistent with the following formula 
for paraconductivity (∆σ=(e2/16 ћs)f(ε)) expressed in terms of so called universal function f(ε), where ε= ln(T/Tc). In the 
Ginzburg-Landau region ( 1<<ε ) we take f(ε) =1/ε, but in the SWF region ( 1>>ε ) we have f(ε)=1/ε3. 
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1. Introduction 
 

Owing to the strong anisotropy, high critical 
temperatures, and small coherence length the high 
temperature superconductors (HTSC) show in zero 
magnetic field a pronounced effect of thermodynamic 
fluctuations above the superconducting transition 
temperature. The theory of Aslamazov-Larkin (AL) of 
noninteracting, Gaussian fluctuations [1] has been 
successfully used to explain the enhancement of 
conductivity (denoted Para conductivity), due to the 
presence of thermal fluctuations of Cooper pairs above 
Tic, in zero magnetic field and for small electric fields.  

Lawrence and Doniach [2] have extended the initial 
Aslamasov-Larkin expression of paraconductivity for the 
two-dimensional layered superconductors. The HTSC are 
strongly anisotropic layered materials and the study of 
paraconductivity in the framework of Lawrence-Doniach 
(LD) model evidenced in the vicinity of Tc a crossover 
between three-dimensional and two-dimensional regimes 
in the majority of HTSC compounds.   

The LD crossover can be shown explicitly in the 
framework of Gauss-Ginzburg-Landau (GGL) theory for 
an isotropic spectrum, when the fluctuation contribution to 
the free energy of a superconductor, just above Tc, can be 
presented as the sum over long-wavelength fluctuations 
[3]. It is essential to note that the GGL approach should be 
correct in the range where the reduced temperature ε, is 
supposed to be small‚ ( 1<<ε ). 

One of the problems still open at present is the 
behavior of the thermodynamic fluctuations far from 
transition in the high-reduced temperature region 
( 1.0≥ε ), when a break down of the GGL approach in 
the description of fluctuations is reported. We have a 
crossover the so-called short-wavelength fluctuations 
(SWF) effects that appear when their characteristic 

wavelength became of the order of coherence length 
( )0ξ .  

These called short-wavelength fluctuations break 
down the „slow variation condition” for the 
superconducting order parameter, the central hypothesis of 
the GGL approach. It was shown that the GGL approaches 
could be extended to the SWF region by introducing a 
momentum cutoff ( ( )0ck 22 −ξ< ) in the fluctuation 
spectrum ([4], [5], [6]) or a cutoff in the total energy 
( ( )[ ] ( )0ck 222 −− ξ<εξ+ ) of the fluctuation modes (in 

units of *m2/2h , where m* is the effective mass of the 
Cooper pairs, k is the momentum of each fluctuating 
mode, c is constant cutoff amplitude close to 1). The last 
condition [7] eliminates the most energetic fluctuating 
modes and not only those with short wavelength. The 
author of [7] calculated the in plane ∆σ under the both 
conditions.  

For the 2D non-cutoff limit of paraconductivity, one 
should have ε1/= ε )f(  (by imposing the condition 

c<<ε  in the expressions under momentum or energy 
cutoff). This result coincides with the well-known 2D 
contribution from Aslamazov-Larkin theory. For clean 
two-dimensional superconductors, in no-cutoff limit SWF 
region, where 1.0≥ε , it was found that 3)f( ε1/= ε . 
This was obtained by imposing the condition c>>ε  in 
the expressions under momentum cutoff or under energy 
cutoff. The similar conclusions were obtained in ref. [8] 
within the self-consistent Hartree approximation. 

In this generalized form the two-dimensional 
paraconductivity is universal. Because it contains only an 
intrinsic parameter s as a prefactor, it permits us to rescale 
the results and to compare them for different compounds.  
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In our paper we present the paraconductivity results 
expressed in terms of the universal function f(ε) for a 
monophase bulk (Bi, Pb)-2223 sample and we will show 
that we have a good fit within the 2D and SWF no-cutoff 
limit of paraconductivity as predicted by Aslamazov-
Larkin theory of and Lawrence-Doniach model. 

 
2. Some theoretical considerations on 
    paraconductivity 
 
The Aslamazov-Larkin theory provide the following 

expression for the excess-conductivity above Tc generated 
by the thermodynamic fluctuations: 
 

 λε=
σ

σ∆ A
0

                                (1) 

Here σ∆  is defined by  

nm σ−σ=σ∆                           (2) 

( )Tmσ  is the measured conductivity and ( )Tnσ is the 
extrapolated conductivity under the assumption of a linear 
or a Zou-Anderson dependence for resistivity 

( ) ( )T
1T

σ
=ρ  above 2Tc; 

r
0

1
ρ

=σ  is the conductivity 

calculated from the room temperature resistivity ( rρ ) 
measured at T=300 K and ε  is the reduced temperature 

          
cT

Tln=ε                                     (3) 

In the limit of GGL approach, 1<<ε  and we have 
the following approximation for the reduced temperature, 
often used in the Aslamazov-Larkin theory 

  ( )
c

c
C T

TT
T/Tln

−
≅=ε                        (4) 

Here Tc =Tcm (Tcm being the mean field critical 
temperature);  
λ is a parameter depending on dimensionality, with two 
contributions: 

a) 3D contribution for λ=-0.5 and A=A3D, when we 
can write: 

  ( )032
eA  with  A r

2

3D
5.0

D3
0 ξ

ρ
=ε=

σ
σ∆ −

h
           (5) 

( )0ξ  is the zero-temperature coherence length in the 
stacking direction of multilayer structure. 

b) 2D contribution for λ=-1 and A=A2D, when the 
excess-conductivity is written as: 

d16
eA  with  A r

2

2D
1

D2
0 h

ρ
=ε=

σ
σ∆ −                 (6) 

where d is the superconducting layers periodicity length. 
The analysis of the excess conductivity above the 

mean critical transition temperature Tcm (taken as Tc) were 
performed in the framework of the Lawrence-Doniach 
model [2], suited for layered superconductors. In this 

model the excess conductivity takes place in the 
superconducting layers coupled by Josephson tunneling 

( ) ( ) 2

0

2
5.0

0 d
0J and 

d16
eA with  4J A ⎟

⎠
⎞

⎜
⎝
⎛ ξ

=
σ

=+εε=
σ

σ∆ −

h
  (8) 

J is the constant coupling between the superconducting 
layers and A is the temperature-independent amplitude, 

( )0ξ is the coherence length in the stacking direction of 
the multilayer structure at T=0 and d is the interlayer 
spacing. For the weak coupling 1J4 <<   the eq. (8) 
reduces to the 2D term. The 3D term is obtained in the 
condition 4J>>1. 

Therefore it results the following expression for the 
crossover temperature, Tcr, between 2D and 3D 
dimensionality:  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
⎛ ξ

+=
2

cmcr d
041TT                      (9) 

All the terms described above are included in the 
appropriate generalization of the Aslamazov-Larkin 
expression of paraconductivity discussed in the 
introduction [3]:  

( )ε=σ∆ f
s16

e2

h
                            (10) 

f(ε) is the so-called universal function that should take the 
following forms, depending of the reduced temperature, 
ε : 

1) for 1<<ε  we are within the GGL of 2D 
paraconductivity described by Aslamazov-Larkin theory:  

( )
ε

=ε
1f                              (11) 

2) For 1.0≥ε , the short wavelength fluctuations 
(SWF) appear when their characteristic wavelength 
became of the order of coherence length, ( )0ξ . Within 
SWF region in the limit of non- cutoff theory one should 
have: 

( ) 3

1f
ε

=ε                             (12) 

 
3.  Experimental results and discussion 
 
3.1 X-Ray diffraction analysis 
 
It is well known that the synthesis of single-phase Bi-

2223 samples is quite difficult. By using both Cu-rich 
starting compositions and a material co-doped with small 
amount of Pb in Bi-Sr-Ca-Cu-O system, we obtained bulk 
(Bi, Pb)-2223 single phase samples, the preparation 
procedure being reported in ref. [9].  

The microstructure of the sample was investigated by 
XRD analysis performed on a PHILIPS PW 1710 
equipment with CuKα radiation. The Bragg diffraction 
patterns are presented in Fig. 1.  The unit cell of (Bi, Pb)-
2223 material was indexed as tetragonal structure with the 
following lattice constants: 39.5=≅ ba Å and              
c=37.05 Å. 
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Fig. 1.  X-ray diffraction patterns for single-phase (Bi, 
Pb)-2223 samples. In the inset is given a  SEM-EDX 
image obtained  with  a  JEOL T type microscope (x1000 
                                        times). 
 
It is known that in the half of unit cell of 2223 phase 

we have two Cu-O pyramids (five coordination’s in CuO2 
planes outside the two Ca layers) and one additional Cu-O 
sheet (four coordination’s in CuO2 plane between the two 
Ca layers). Our calculated values for lattice parameters are 
similar with those communicated by Natsume et al. [10]. 

The SEM-EDX analysis was made with a JEOL T 
type microscope. The image presented in the inset of     
Fig. 1 is the prove that the sample has o good 
homogeneity. It is to note that even if the diffraction peaks 
exhibited a single-phase compound, a very small fraction 
of impurities are still present, which appear as black 
crystals dispersed on the sample surface.  

 
3.2 Resistivity and paraconductivity 
 
Four-probe DC resistivity data of rectangular slab 

samples were acquired in the temperature range of 20 K to 
293 K at different magnetic fields in the range 0 to 0.7 T 
and at a current density of 0.7 A/cm2. Conductive silver 
paste was used to attach the gold leads to the specimens. 
High-resolution electrical resistivity data have been taken 
using a Keithley 220 programmable current source, a 
Keithley 181 nanovoltmeter, and a Keithley 182 sensitive 
digital voltmeter, a Lakeshore temperature controller and a 
closed-cycle helium refrigerator. 

Two methods may be used in order to estimate the 
resistivity versus temperature in the normal state: one is 
Zou-Anderson method, which predict a ρ=AT+(B/T) fit 
function; the other is the linear dependence for resistivity 
ρ(T). The plot of the resistivity versus temperature 
exhibits two different regimes. The one is corresponding 
to the normal state that shows a metallic behavior (above 
2Tcm) emphasized by a linear fit relations: 

The other is the region characterized by the 
contribution of induced fluctuation Cooper pairs to the 
conductivity (the AL term) above Tc, where ρ(T) is 
deviating from linearity.  

An additional contribution may be the Maki-Thomson 
term that is associated with the increase in the normal 
electron conductivity induced by superconducting 
fluctuations. In cleaner films the MT term gains 
importance.  

The above considerations are illustrated in the 
examples given in Fig. 2. 

 
Fig. 2. The measured resistivity. The solid line is the 
extrapolated  resistivity   in  the  assumption  of  a  linear  
             dependence versus temperature above 2Tc. 

 
The linear fit for the experimental ρ(T) (solid line) 

above 2Tc is deduced by regression analysis. In our study 
the transition temperature Tc was estimated as the so-
called mean field critical temperature Tcm as being equal 
with the temperature of the main peak in the dρ /dT versus 
T plots.  

 

 
 
Fig. 3. The log-log plots for the paraconductivity of 
single (Bi, Pb)-2223 phase in the framework of Larkin-
Aslamazov theory.  The  solid  lines  show  the theoretical  
                                      approaches. 
  

From the experimental 
0

ln
σ
σ

 versus 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

c

c

T
TT

ln (the log-log plots) given in Fig. 3, we have 

obtained through a regression analysis the values of the 
parameter λ as the slope of the curve) in order to verify the 
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theoretical predictions presented above. The λ parameter 
gives us information about the dimensionality of the order 
parameter fluctuations for the superconducting system. 
Two straight lines are clearly present in the log-log plots 
(shown in Fig. 3), with the slopes of λ equals  -0.5 (the 3D 
dimensionality near Tcm) and of  λ=-1 (2D dimensionality) 
respectively. There is also a bending to the so-called SWF 
(short wavelength fluctuation) behavior, where λ=-3.  

The log-log plots facilitate also the estimation of 
cross-over temperature Tcr from 2D to 3D dimensionality 
and then the possibility to calculate the coherence length 

( )0ξ at 0 K (by substitution of Tcr from 3D to 2D, 
experimentally determined, in the Eq. 9), the estimation of 
the cross-over temperature T* from 2D to SWF behavior 

and of 
T
*Tln* =ε .  

When we are doing all this calculations we have to 
pay attention to the fact that all these parameters are 
depending on the interval of temperature in which the 
linear ρ(T) was appreciated, in order to evaluate the 
paraconductive behavior. To illustrate this we have chosen 
five different intervals for the linear ρ(T) dependence. 

 
 

Table 1.  
 

Interval (K) Linear ρ(T) dependence 
(µΩ.m) 

212.72÷281.39 6.4624+0.03622 T 
193.52÷281.39 6.2098+0.03721 T 
173.94÷281.39 6.0400+0.03788 T 

164.106÷281.39 5.9415+0.03828 T 
163.12÷281.39 5.8627+0.03861 T 
  

In the Table 2 are given the values of the parameters 
corresponding to the five arbitrary chosen intervals.    

 
 

Table 2. 
 

Interval (K) λ3D  λ2D λSWF D3D2
crT −

(K) 
ξ(0)
(Å) 

T* (K) *ε
212.72÷281.39 -0.54  

err.7.18%
-1.043 (err 
err.1.65%) 

-3.00 
err.12.72 

113.206 4.3 146.64 0.311

193.52÷281.39 -0.557 
err.7.49%

-1.004 
err.1.96% 

-2.995 
err.15.12%

111.59 3.65142.5350.283

173.94÷281.39 -0.567 
err.7.71%

-0.993 
err.1.69% 

-2.959 
err.17.38%

110.848 3.31139.27 0.259

164.106÷281.39 -0.573 
err.7.85%

-1.030 
err.1.9% 

-3.009 
err.7.29% 

110.922 3.34137.54 0.247

163.12÷281.39 -0.578 
err.7.95%

-1.005 
err.1.29% 

-3.025 
err.9.45% 

110.656 3.22135.0160.228

 
 
As observed from the Table 2 the error in evaluated λ 

is smallest for the 2D region and higher or the 3D and 
SWF regions. Another observation is that D3D2

crT − and the 
crossover temperature T* from 2D to SWF behavior (as 
well as the corresponding reduced temperature *ε ) 

decrease with the decrease of the lower temperature value 
of the temperature interval.  One can also remark that the 
coherence length in the c-direction is less than the 
dimensions of the unit cell. 

Cimberle et al. [3] has analyzed the applicability of so 
called universal function f(ε) from the formula give in eq. 
(10) that is considered as a generalization of the 
Aslamazov-Larkin theory of paraconductivity available 
also in the range of temperatures above and far away from 
Tcm.  Accordingly with those formula for 1<<ε  (the GL 
region of temperatures) the result should be in good 
agreement with Aslamazov-Larkin one ( ) ε=ε /1f . But 

for 1.0≥ε  it was found the following dependence: 

( ) 3/1f ε=ε known as the called SWF (short wavelength 
fluctuation) behavior. 

The authors of the paper mentioned above have 
verified their theoretical predictions for three samples and 
found that for all the investigated samples (Bi-2212 
sample, Bi-2223 sample and YBCO-123 sample) the 
crossover from the two dimensional paraconductivity to 
the asymptotic (SWF) behavior takes places universally at 
ε*≅ 0.23. 

The analysis of our results shows that there is an 
evident bending of the log-log curves from 2D through 
those of SWF (short wavelength fluctuation) behavior with 
 λ=-3 for our pure 2223-samples. However the crossover 
point from 2D to SWF behavior is strongly dependent of 
the interval chosen for appreciate the linear dependence of 
resistivity as seen in the Table 2. 

 
 
4. Conclusions 
 
The 3D, 2D and SWF behaviors have been observed 

in a single phase (Bi, Pb)-2223 sample with the best fit in 
the framework of non-cutoff limit of paraconductivity (as 
well as in the Aslamazov-Larkin theory and Lorentz-
Doniach model). The coherence length is smaller than the 
lattice constants and the crossover temperatures from              
3D-2D and from 2D to SWF are strongly dependent on the 
interval in which is appreciated the linear dependence of 
resistivity versus temperature. This is in contradiction with 
the Cimberle results [3], who found for three different 
samples the same value of 0.23 for the crossover reduced 
temperature from 2D to SWF.    
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