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The critical behavior of a one-dimensional spring-block model aimed to describe magnetization phenomena is studied by 
Monte-Carlo type computer simulations. The introduced model resembles the classical Burridge-Knopoff type models where 
the blocks represent the Bloch-walls that separate inversely oriented magnetic domains, and springs correspond to the 
magnetized regions. Disorder is introduced through randomly distributed pinning centers along the sample and the 
magnetization process is modeled through a relaxational dynamics. The shape of the hysteresis loops and the distribution 
of avalanche sizes are studied (jumps in magnetization) for different disorder values. As a function of the amount of disorder 
in the system, in agreement with previously introduced magnetization models, the subcritical, critical and supercritical 
regions are identified. The results indicate that for a critical amount of disorder the introduced model exhibits critical 
behavior characterized by power-law distribution of the avalanche sizes. An estimation of the critical exponent is given. 
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1. Introduction 
 
The study of disordered systems is an important 

research area in statistical and condensed-matter physics. 
Disorder-induced first-order phase transitions [1-8] 
represent a very fashionable problem in this field. 
Whenever a phase transition takes place in a physical 
system, the first or higher order derivatives of the free 
energy functional becomes non-analytical. Accordingly, 
some characteristic thermodynamic properties diverge or 
have singularities. In the vicinity of a phase transition the 
system exhibits critical behavior characterized by power-
law type divergence or convergence to zero of some 
thermodynamic quantities. The exponents characterizing 
these power-laws (critical exponents) are universal in 
some sense. They do not depend on the microscopic 
details of the system, only on its dimensionality and 
symmetry properties. Universality is due to the fact that 
near criticality the correlation length in the system 
becomes very large, even infinite, thus making it possible 
to average out many microscopic degrees of freedom. 

For some types of first-order phase transitions thermal 
fluctuations are secondarily small. This is the reason why 
they are called fluctuationless phase transitions. Such 
tansitions are for example the athermal solid-solid 
diffusionless martensitic transitions1 [9], and the field-
induced first-order phase transitions in ferromagnetic 
systems where the external driving field (H) plays the role 
of the driving force in the transition. A typical model of 
                                                 
1 Martensitic transitions occur in a wide range of 
conventional materials including high carbon steels. It is a 
first-order diffusionless phase transition when the 
triangular crystalline structure shears to square symmetry 
through local elastic distortions. 

such type of first-order phase transition is the Ising system 
in external magnetic field H at T<Tc. When H changes 
sign, the magnetization reverses abruptly. The difference 
between conventional fist-order phase transitions (like for 
example liquid-gas transition) and solid-solid transition 
(when the material changes its crystalline or magnetic 
form) is that in the latter case the sharp transition is absent. 
Hysteresis occurs instead. Hysteresis occurs even if the 
system is driven extremely slowly. This fact shows that the 
occurrence of hysteresis is not of kinetic nature, but it is 
due to the quenched disorder present in the system. 

In general the presence of the disorder changes the 
free-energy landscape of the system in a way that there 
will be energy barriers separating many local minima 
(metastable states). In magnetic systems the movement 
from one metastable state to the next one is a collective 
process, involving a number of magnetic domains. This is 
called avalanche. Avalanches lead for example to the 
magnetic Barkhausen noise (BN). When the distribution of 
the avalanche sizes obeys power-law, this indicates the 
existence of criticality in the system. Such transition is 
related to the change of the properties of the hysteresis 
loop and avalanche size distribution as a function of the 
disorder. This is the reason why these types of transitions 
are called disorder-induced. In the vicinity of the critical 
point the main differences relative to the classical phase 
transition are: (i) the system has a history-dependent 
metastable evolution (is not in equilibrium), and (ii) the 
process is deterministic at T = 0, thus no thermal 
fluctuations are present. 

Several Ising-type models that are able to account for 
disorder-induced criticality in magnetic systems were 
already introduced and studied [1,5,10]. Ferromagnetic 
coupling, interaction with the external driving magnetic 
field and effect of some kind of disorder governs the 
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dynamics and time-evolution of these systems. A general 
Hamiltonian could be written in the following shape: 

 
disordersHssJH

i
ij

ij
iijgen ++= ∑∑       (1) 

Depending on the manner in which disorder is taken 
into account in the Hamiltonian, three different models 
were intensively studied. The random-field Ising model 
(RFIM) introduced and studied by Sethna et al. [1-3] takes 
into account the effect of disorder in the Ising-system 
through a local random field acting on each site of the 
lattice. The random-bond Ising model (RBIM) was 
introduced by E. Vives and A. Planes in Ref. [5]. As the 
name of the model indicates, randomness is introduced in 
the system through random coupling constants (Jij in the 
Hamiltonian (1)). Vives and Planes studied also another 
model aimed to describe magnetization phenomena, 
namely the random anisotropy Ising model (RAIM) [10] 
In this case a random anisotropy is responsible for the 
disorder. 

Simulations and analytical calculations were 
performed on these models. Regarding the occurrence of 
critical behavior the results are in qualitative agreement 
with each other. For a certain well-defined value of the 
disorder the results indicate the presence of a conventional 
critical point in the system. Below this critical amount of 
disorder the magnetization reversal from negative to 
positive saturation is abrupt. Above the critical value of 
disorder the magnetization reversal takes place 
continuously without a giant avalanche which spans the 
whole system. There is thus a well-defined value of the 
quenched disorder in the system for which the transition 
between sharp and smooth magnetization reversal takes 
place. At this point a first-order fluctuationless phase-
transition occurs. The tunable parameter is the amount of 
disorder and the most relevant signature of the critical 
state is the occurrence of power-law distributions for some 
characteristic quantities like avalanche-size distribution, 
signal energy-, duration- or area. 

Many other conceptually different models were also 
elaborated in order to capture the occurrence of criticality 
and power-laws in magnetization phenomena. Some of 
them considers the motion of the domain walls which 
separate magnetic domains with different orientation (see 
for ex. Refs. [11-17]). These models consider different 
types of interactions, giving certain contributions to the 
free-energy functional of the studied system: exchange 
energy, magnetostatic energy, magnetocrystalline 
anisotropy, magnetoelastic energies and disorder. For a 
complete review see Ref. [18]. 

After theoretically predicting the possibilities of 
disorder-induced phase transitions, one might put the 
legitimate question whether this is a real phase transition 
observable in real materials. Recently Berger et al. [6] 
provided experimental evidence for disorder-driven phase 
transitions. Berger et al. reports measurements performed 
on an exchange-coupled Co/CoO-bilayer structure. The Co 
is ferromagnetic with Curie temperature TC=1388 K, the 
CoO is antiferromagnetic with Néel temperature 
TN=291K. The experiment was performed between           

T = 80-300 K. This bilayer system has the great advantage 
that the degree of the disorder can be reversibly varied. 
The interface roughness together with the interface 
exchange coupling between the two layers results in an 
effective disorder in the system. Varying the temperature, 
experimentalists could influence the anti-ferromagnetic 
ordering of the CoO layer. Interface imperfections cause 
spin frustration near the Néel temperature and induce 
magnetic disorder. Thus, they could control the effective 
disorder in the bilayer system simply by tuning the 
temperature. Near T = 190 K a dramatic change takes 
place: the magnetization of the sample varies 
continuously, while for higher temperatures (from                   
T = 200 K) the magnetization of the whole sample 
reverses abruptly. This transition cannot be a consequence 
of thermal effects because at this temperature both layers 
are below their critical temperature. By the other hand Ref. 
[6] reports also a reference measurement with a single Co 
layer, which instead showed discontinuous magnetization 
reversal even at low temperatures. This measurement 
proved that the disoder induced by the interface-coupling 
is responsible for the critical behavior. Scaling analysis 
proved the existence of scaling behavior in the vicinity of 
the critical point. Experiments established thus the 
existence of a conventional critical point associated with 
the amount of magnetic disorder. 

In this paper we investigate the possibility and 
necessary conditions for the occurrence of critical 
behavior in a simple one-dimensional spring-block model 
for magnetization. This model was recently introduced by 
us, and successfully used to describe the statistics of the 
Barkhausen noise [19]. 

 
 
2. Theoretical model. The spring-block model 
 
The model is essentially a one-dimensional (1D) 

spring-block system, similar to the 1D Burridge-Knopoff 
models [20,21] applied in the study of earthquakes. It is 
aimed to reproduce the accepted microscopic picture of 
domain wall dynamics for 180 degree Bloch-walls which 
separate inversely oriented (+ | - | + | - | + …) magnetic 
domains (Fig. 1). 

 

 
 
 

Fig. 1. Sketch of the mechanical spring-block model. 
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We assume that the domain walls are pinned by 
defects and impurities, and cannot move unless the 
resultant force acting on them is bigger than the strength of 
the Fp pinning force. When the resulting force is greater 
than the pinning force, the wall simply jumps in the 
resulting force direction on the next pinning center. Apart 
of this pinning force there are two other types of forces 
acting on each domain wall. To understand these forces let 
us consider the i-th wall (which separates the (i-1)-th and 
i-th domain) free to move and all other walls fixed. One of 
the forces acting on the domain wall, FH, results from the 
magnetic energy of the domains i and (i-1) in an external 
magnetic field H and has the form: 

 
,)1( HF i

H ⋅−= β         (2) 
 

with β constant. In our model for the sake of simplicity we 
define the units such that β=1. For positive values of the 
external magnetic field this force encourages the increase 
of the domains oriented in the + direction, and for negative 
values of the external magnetic field this force tends to 
increase the size of the domains oriented in the - direction. 

A second type of force, Fm, acting on both sides of the 
domain walls, is due to the magnetic self-energy of each 
domain. This force tends to minimize the length of each 
domain. It can be shown that Fm is proportional with the 
length of the considered domain xi. 
 

.imm xfF −=               (3) 
 

The constant fm is an important coupling parameter in 
this model and acts as the elastic constant of a mechanical 
spring. 

The system of the Fp, Fm and FH forces can be now 
easily mapped on a one-dimensional spring-block 
Burridge-Knopoff type model [20]. 

The main constituents in this mechanical model are 
randomly distributed pinning centers, rigid walls sitting on 
pinning centers (describing Bloch-walls) separating + and 
- oriented domains and springs between the walls 
(describing the Fm forces). The strength of the pinning 
centers (pinning forces), Fp, are randomly distributed 
following a normal distribution. This force is modeled as 
being similar to a static frictional force. Walls can be only 
on pinning centers and two walls are not allowed to 
occupy the same pinning center. This constraint implies 
that the number of magnetic domains and domain walls 
are kept constant and are thus a-priori fixed. Domains 
cannot totally disappear and new domains cannot appear 
during magnetization phenomena. The elastic springs are 
ideal with zero equilibrium length and with the tension 
linearly proportional with their length. The tension in the 
elastic springs will reproduce the Fm forces. Beside the 
pinning forces and the tensions in the springs there is an 
extra force acting on each wall. The strength of this force 
is proportional with the exterior magnetic field's intensity, 
it is the same for all walls but its direction is inverse for    
+|- and -|+ walls. This force will reproduce the FH forces. 
The main differences relative to the classical Burridge-

Knopoff type models [20,21] is that in our case the driving 
force acting on the blocks has different orientations for the 
first-nearest neighbors, and there is absent a second layer 
of springs which connects the sliding blocks to the driving 
force. 

The dynamics of this model is aimed to reproduce real 
magnetization phenomena. First Np pinning centers are 
randomly distributed on a fixed length (L) interval, and 
their strengths are assigned. Than a fixed Nw number of 
walls are randomly spread over the pinning centers                
(Nw « Np) and connected by ideal springs. Neighboring 
domains are assigned opposite magnetic orientation. The 
system constructed this way will be driven through several 
whole magnetization-demagnetization cycles (hysteresis 
loops) using relaxational dynamics. This dynamics has two 
main laws: (i) if |FH+Fm| > Fp is true in the case of wall 
labeled i, it will jump to the next pinning center in the 
direction of the resultant force, except (ii) the next pinning 
center is occupied by another domain-wall. In this case 
wall i will stay in its original place. The system has 
reached equilibrium if no wall can move anymore. We 
assume that the time needed for the system to achieve 
equilibrium is zero. It is important to note that one event 
(jump) can trigger many other events leading to avalanche-
like processes. The order in which the position of the walls 
is updated is random. The value of the FH external force is 
increased step-by-step (corresponding to an increasing H 
magnetic field intensity), and for each new FH value an 
equilibrium position of the system is searched. In each 
equilibrium configuration we calculate the total 
magnetization of the system as: 

,∑ ⋅=
i

ii slM                 (4) 

where li is the length of domain i, and si is it's orientation: 
+1 for positive orientation, and -1 for negative orientation. 

During the simulation we are monitoring the variation 
of the magnetization focusing on the shape of the 
hysteresis loop and jump-size distribution. The hysteresis 
loop is the history-dependent relation between the 
magnetization M and the external magnetic field H when 
the value of H is increased and decreased successively. 
The jump size distribution (g(s)) is the distribution 
function for the obtained values of abrupt jumps in M 
throughout many hysteresis loops. 

The parameters of the model are: Np – the number of 
pinning centers; Nw – the number of Bloch-walls (usually 
Nw « Np); the geometrical size of the sample L which 
determines the density of the pinning centers; fm – the 
coupling constant between the neighboring domain walls 
(corresponds to the elastic constant in the case of coupled 
springs); the dH – driving rate of the external magnetic 
field (change in H for one simulation step) and the 
standard deviation σ of the pinning forces. 
 

3. Simulation results 
 
In the present study we focus on the analysis of the 

hysteresis loops and the corresponding jump size 
distribution functions while the amount of disorder is 
varied in the system. Our goal is to investigate the 
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possibility of obtaining a critical behavior in this model 
and thus the presence of a disorder-induced phase 
transition. 
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Fig. 2. Hysteresis loops (left column) and corresponding 
jump-size distributions (right column) for different 
amount of disorder in the system. Figures (A) are for             
σ =0.1, figures (B) are for σ =1, figures (C) are for              
σ =10 and figures (D) stand for σ =100. The power-law 
fit for the jump-size distribution on figure (B) indicates a 
scaling exponent -0.9. Other parameters of the 
simulations are: Np/Nw=100, Np = 1000, L = 3, fm = 10  
                                 and dH=0.001. 

 
As it is known from previous studies on RFIM, RBIM 

and RAIM [1,5,10] the amount of disorder in the 
considered model has a crucial role on the statistical 
properties of the obtained magnetization noise. For low 
disorder and very strong disorder values the jump-size 
distribution does not exhibit a scaling property. Usually 
there is a critical amount of disorder for which the jump-
size distribution has a power-law decay. In our model the 
amount of disorder can be controlled in two ways, either 
by varying the density of pinning centers (Np/L) or by 
changing the standard deviation $\sigma$ of the strength 
of their distribution function. In our study we followed the 
second way. 

For different disorder levels the characteristic 
hysteresis loops and the corresponding jump-size 
distributions are plotted on Fig. 2. Since the jump size 
distribution histogram in our simulation corresponds to the 
avalanche size distribution from experiments, it is the most 
relevant distribution characterizing the statistics of this 
disorder induced phenomenon and in particular the 
Barkhausen noise. 

For high disorder level (Fig. 2 (B), (C) and (D),                
σ ≥ 10) the shape of the obtained hysteresis curves 
satisfies our expectations and fulfills all the requirements 
for real magnetization phenomena. On these curves one 
can detect many discrete jumps with different sizes, thus 
the model exhibits BN. In addition, when the sample is 
driven consecutively through many hysteresis cycles the 
magnetization curves do not follow exactly the same path, 
although the parameters of the simulation were unchanged. 
The qualitative shape of the hysteresis curve is quite stable 
for a wide range of the free parameters. In contrast, for 
low disorder in the system (Fig. 2 (A), σ < 1) the 
hysteresis loops are damaged, and we have many back and 
forward jumps in the magnetization, since the equilibrium 
position of the system is quite hardly reached (this is the 
explanation for the filled and damaged hysteresis cycle for 
σ = 0.1). For the considered fixed Np/Nw = 100 value the 
jump-size distribution the simulated curves show that the 
critical behavior is reached for σ = 1. For this disorder 
value the jump-size distribution function follows an almost 
perfect power-law with exponent around -0.9. On the 
hysteresis loop on this figure (Fig. 2B) one can still 
observe that sometimes there is a small regime where the 
system's magnetization jumps back and forward (the 
region in the drawn box). The last point drawn with a star 
on the corresponding jump-size distribution function is 
due to this unstable part of the hysteresis loop and 
seemingly is out of the scaling. 

 
4. Conclusions 
 
Comparison of the obtained simulation results with 

previous theoretical and experimental ones yields thus the 
following main conclusions: 

1. In agreement with the previously used random-
field, random-bond and and random anisotropy Ising 
models [1,5,10], as a function of the amount of disorder in 
the system the Burridge-Knopoff type spring-block model 
introduced by us suggests also the existence of three 
different regimes: subcritical, critical and supercritical. 

2. The simulated hysteresis loops in the critical and 
supercritical regimes are qualitatively in good agreement 
with the ones obtained in experiments. One can observe 
many Barkhausen jumps with various sizes, just as it is 
expected from the experimental results. We can also learn 
from the graphs that the hysteresis loops do not follow the 
same path when the system goes through several cycles.  

3. The shape of the simulated jump size distribution 
function predicts a nice scaling in the critical regime, and a 
non-power-law nature in the supercritical regime. Our 
results suggested in the critical regime a power-law fit 
with an exponent around -0.9. Experimentally this quantity 
is usually not investigated, since it is difficult to detect 
those very small changes in the magnetization. 

From all these scaling properties we conclude that the 
power-law tendencies suggested in our simulations can 
explain at least qualitatively the measured statistics of the 
Barkhausen noise. The simple one-dimensional 
mechanical model presented here is suitable thus to 
qualitatively reproduce real magnetization phenomena 
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with special attention to magnetic Barkhausen noise. The 
model captures the main elements of the microscopic 
dynamics for the phenomenon and in spite of its gross 
simplification, it contains all the necessary ingredients to 
account for the critical behavior of magnetic systems 
governed by quenched disorders. The model is also 
suitable for pedagogical purposes and can be easily 
implemented on computer. 
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