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We calculate the spin wave spectrum for three phenomenological diluted Heisenberg-like spin models that are 
representative for a qualitative description of the magnetic properties of diluted magnetic semiconductors. We investigate 
the combined effect of frustration induced by anisotropy and simulated annealing on the spin wave spectrum and 
temperature dependence of the magnetization. We analyze short-range model characterized by a constant coupling 
between the spins and a low coordination number, long-range model with a increased connectivity and RKKY model with an 
oscillating sign in the exchange coupling. 
 
(Received December 2, 2005; accepted May 18, 2006) 
 
Keywords: Diluted magnetic semiconductors, Diluted Heisenberg – type spin models, Spin waves 
 
 

1. Introduction 
 
Recently ferromagnetism was discovered in 

1-x xGa Mn As  semiconductor [1], with a critical 
temperature as high as cT  = 110 K , and has initiated a 
tremendous amount of experimental and theoretical work 
to explain the magnetic properties of this simple diluted 
magnetic semiconductor (DMS). Until now a large body 
of experimental work focused on the study of magnetic 
properties to explain the origin of ferromagnetism of this 
semiconductor. The consequences of understanding the 
physics behind these DMS's may leads to the developing 
of new materials which will combine the advantage of 
semiconducting devices with the new features due to the 
possibility of controlling the magnetic state. 
Measurements of magnetoresistance and concentration 
effects [2] on cT  strongly suggest that ferromagnetism in 

1-x xGa Mn As  has the origin in Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction between the Mn  spins, 
mediated by the holes from the valence band of the bulk 
system. The doping dependence of cT  may be understood 
as arising from the modification of the free hole 
concentration originally induced by the Mn  impurities. 
The non-equilibrium method used for obtaining these 
DMS may lead to the formation of As-antisites and Mn-
interstitial impurities, which play a minor role by partially 
compensating the hole concentrations and decreasing cT . 
Because of the sensitivity to growing conditions and the 
strong valence band spin-orbit coupling the simplest 
magnetic properties such as temperature dependence of 
magnetization for DMS are completely different from the 
well known characteristics of itinerant electron 
ferromagnet. Besides properties of the T 0= , 
magnetization and Curie temperature were found to 
depend on post-growth annealing protocol [3]. Zaránd and 
Jankó [4] showed that within the RKKY approximation 
the spin-orbit coupling leads to anisotropic exchange 

between magnetic spins. Other mechanism such as double-
exchange mechanism based on d  electron hopping [5], 
double-resonance mechanism [6], the Zener model 
description [7] have been proposed. In most of the 
previous theoretical calculations an effective interaction 
between the magnetic moments is constructed and the 
magnetic properties of the system are analyzed in the 
framework of a disordered Heisenberg-like spin system 
with or without anisotropy included. In this paper we 
consider three different phenomenological models that 
describe the interaction between the magnetic spins that 
are relevant for understanding the physics that governs 
DMS. The effect of simulated annealing and anisotropy on 
the spin wave spectrum is studied in detailed. We assume 
that the magnetic properties of the system can be modeled 
by an effective Hamiltonian [8] which explicitly includes 
the anisotropy in the system, but it is not the purpose of 
the present work to present a microscopic derivation of the 
effective Hamiltonian. Disorder effects are considered to 
play a major role in the overall magnetic behavior of 
DMS. To simulate annealing we introduced a screened 
Coulomb repulsion between the Mn  ions and let them 
relax for sometime relt  when we use T=0  Monte Carlo 
simulation. After the relaxation process for the positions of 
magnetic moments we used Metropolis Monte Carlo 
calculations to generate the ground state at T=0  which in 
most cases is non-collinear. For completion we also do 
finite temperature Monte Carlo calculations and compute 
the temperature dependence of the magnetization for each 
model. We study unrelaxed systems where the initial 
positions of the Mn  ions, which were randomly generated 
remain fixed, together with the fully relaxed systems 
where the relaxation time is large. For these systems the 
Mn  ions form a regular bcc lattice with some defects, 
when periodic boundary conditions are used. We have to 
emphasize that the use of periodic boundary conditions is 
absolutely necessary, otherwise the Mn  ions move to the 
sides of the finite lattice in such a way to minimize the 
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energy (maximize the distances between the ions) and this 
effect leads to unphysical arrangement of the lattice. The 
plan of the paper is as follows: In sec II we present the 
main theoretical approach and approximations used. In 
sec. III we present the results for the spin wave spectrum 
together with the temperature dependence magnetization 
curves for relaxed and unrelaxed systems for isotropic and 
anisotropic samples. Section IV is dedicated to 
conclusions.  
 

2. Theoretical model 
 
In this section we present the main theoretical 

framework for computing the spin wave spectrum of a 
disordered system with anon-collinear ground state. Our 
system consists of a fixed number of randomly arranged 
spins on a fcc lattice. By using a fcc lattice and randomly 
placed spins we try to model the bulk system GaAs  when 
Mn  ions substitute Ga atoms. The spins are treated as 
classical variables with unit length. Considering that the 
Mn  ions have the spin S=5/2  this is equivalent to 
rescaling the coupling constants. We’ll use for study the 
following Hamiltonian: 

 

( )i i j j B i
i , j , i

H S J R R S gHSα αβ β

α β

µ= − − −∑∑ ∑
rr r r

        (1) 

 
In eq. (1) iSα  is the ( x, y,z )α  component of the spin at 

the site index i, ( )i jJ R Rαβ −
r r

 is the exchange coupling, 

H
r

 is the magnetic field which in what follows will be 
considered along the ẑ  axis, and introduce the notation 

B zh gHµ= . Throughout of our calculation we consider 
the following parameterization of the exchange coupling: 
 

( ) ( ) ( )ij i j i j i jJ J R R J S S S S f rλ ⊥ ⊥= − = +� �
r r

          (2) 

 
where parameter J  incorporates the positional disorder in 
the model. Parameter λ  controls the anisotropy in the 
system. For 0 1λ< <  spins prefer a parallel arrangement 
relative to the axis that join their positions and for 1λ >  
spins prefer a perpendicular arrangement relative to the 
same axis. In all the models that we consider the angular 
part of the interaction is the same and is controlled by the 
anisotropy parameter λ . The only difference between 
them is reflected in the radial part of the coupling ( )f r . 
We investigate the following interactions: 
( ) ( )cf r R rθ= − (short range model SRM), 

( ) 4f r 1 / r=  (long range model LRM) and 

( ) ( ) ( )( ) ( )4
F F F Ff r sin 2k r 2k r cos 2k r / 2k r= −  

(RKKY model). The short range model allow the 
interaction of a finite number of Mn  spins with equal 
strength while the long range and RKKY model allow the 
interaction between all the spins in the lattice [8]. The 

method that we present  for the calculation of the spin 
wave spectrum (SWS) assumes that the ground state of the 
system at the mean field level is known. In our 
calculations the ground state is obtained by performing 
extended Monte Carlo calculation using Metropolis 
algorithm at T 0= . Finite temperature calculation were 
also performed for the ground state to obtain the 
temperature dependence of the magnetization and compute 
the critical temperature. Recently a different method using 
Tyablikov approximation was proposed for computing the 
SWS of DMS but only for a isotropic Hamiltonian [9]. In 
what follows we describe the method that we used for 
computing the eigenenergies and the eigenvectors of the 
SWS. The analysis start by taking into account that the 
ground state is not fully polarized therefore at each site we 
rotate the framework in such a way that the z -component 
of the spin iS

r
 points into the in̂  direction where in̂  is the 

direction of the spin iS
r

 in the ground state. By doing this, 
we have the decomposition: 

z x x y y
i i i i i i iˆ ˆ ˆS S n S e S e= + +
r

% % %  
where the unit vectors are given in spherical coordinates as 
 

( )
x

y

z

n̂ sin cos
ˆ ˆn , n sin sin

n̂ cos

θ φ
θ φ θ φ

θ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )
x z

x
y z2

2z
z

ˆ ˆn n cos cos
1ˆ ˆ ˆe , n n cos sin

1 n sinn̂ 1

θ φ
θ φ θ φ

θ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟− ⎜ ⎟⎜ ⎟ −− ⎝ ⎠⎝ ⎠

 

( )
y

y
x2

z

n̂ sin
1ˆ ˆe , n cos

1 n 0 0

φ
θ φ φ

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟− ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
and iSα%  are the components of the iS

r
 in the rotated 

frame. We are interested in computing the spin wave 
spectrum in the linear approximation therefore we neglect 
non-linear effects [10]. By using Holstein-Primakoff [11] 
transformation and the linear spin wave theory [12], 
retaining only terms up to the second quadratic order in the 
boson operators we have: 
 

z †
i i i
†

i
†
i

S S b b

S 2Sb

S 2Sb−

= −

=

=

%

%

%

                                 (3) 

 
Each spin is characterized by a unit vector that 

describes its direction in the local frame. We use 

( )ˆ ˆ ˆe ,e ,n+ −  as the basis in the local frame with: 

( )x y1ˆ ˆ ˆe e e
2

± = ±  
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By combining these expressions we can express the 
spin operator in terms of creation and annihilation 
operators as: 

( ) ( )† †
i i i i i i i iˆ ˆ ˆS S b b n S e b e b+ −= − + +
r

 

 
In the linear approximation we need to expand the 

Hamiltonian up to quadratic order in the creation and 
annihilation operators for the spin waves †

ib  and ib . By 
doing that we end-up with the following expression for the 
Hamiltonian: 

( )

( )

(

)

†
i i i

i

† †
i ij j i i j j

i , j

† †
i ij j i j i ij j i j

i , j

† †
i ij j i j i ij j i j

ˆ ˆH H b†,b 0 h n zb b

ˆ ˆS n J n b b b b

ˆ ˆ ˆ ˆS e J e b b e J e b b

ˆ ˆ ˆ ˆe J e b b e J e b b

+ − − +

+ + − −

= = + +

+ + −

− + +

+ +

∑

∑

∑
              (4) 

 
The time evolution for the creation operator is: 
† †
i iib H ,b⎡ ⎤− = ⎣ ⎦
& . By introducing the following notations 

 

i i i ij j
j i

ij j ij i

ij j ij i

ˆ ˆ ˆˆf hn z 2S n J n

ˆ ˆg 2Se J e

ˆ ˆr 2Se J e

≠

+ −

− −

= +

=

=

∑
               (5) 

 
with g hermitian matrix, ( )g g+= , r symmetric matrix 

( )Tr r=  and if  real ( )*
i if f=  the commutator is: 

 

( )† † †
i i i ji j ji j

j

H ,b f b g b r b⎡ ⎤ = − +⎣ ⎦ ∑            (6) 

 
Now we can diagonalize the Hamiltonian by a 

canonical transformation: 
 

( ) ( ) ( )( )†
i , i i , i

i

A E E b E bφ φ− += +∑  

 
by requiring that ( ) ( )H ,A E EA E⎡ ⎤ = −⎣ ⎦ . We end-up 
with the following eigenvalue problem: 
 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

†
i , i i , i i , i

i , i

*
ji i , ji i , j

j

* †
ji i , ji i , j

j

E E f E b E b

g E r E b

g E r E b

µ
µ

φ φ φ

φ φ

φ φ

− +

− +

+ −

− = − +

+ −

− −

∑ ∑

∑

∑

 

or in matrix form: 

( )
( )

*
i ,

* i ,

E f g r
0

r E f g

φ
φ

−

+

⎛ ⎞− − − ⎛ ⎞⎜ ⎟ =⎜ ⎟⎜ ⎟⎝ ⎠+ −⎝ ⎠
            (7) 

Next we want to find the orthogonality relations 
satisfied by the canonical operators ( )A E  (E=energy) and 

wave functions ( )i , Eµφ  .For the particular case of 
positive energy a compact expression for the annihilation 
operator is: 

 
( ) ( )i , i

i ,

A E 0 E bµ
µ

µ

φ> =∑                   (8) 

 
where µ = ± , and we also introduced the notation 

i ib b− =  and †
i ib b+ = . By calculating the commutator we 

have: 
 

( ) ( ) ( ) ( )

( ) ( )

'
i , i', ' i i'

i , ,i', '

i , i ,
i ,

A E' ,A E E E' b ,b

1, if E E' 0
E' E

0 otherwise

µ µ
µ µ

µ µ

µ µ
µ

φ φ

µφ φ

−⎡ ⎤⎡ ⎤ = =⎣ ⎦ ⎣ ⎦

= >⎧
= = ⎨

⎩

∑

∑
          (9) 

 
and 

( ) ( )2 2
i , i ,

i

E E 1φ φ− +− =∑  

 
In the case of negative energies (E<0) we can 

construct the wave function in a similar way by making 
the observation that in this case 

( ) ( )i , i ,E 0 E 0µ µφ φ −< = >  
 

The normalization condition in this case is: 
 

( ) ( )2 2
i , i ,

i

E E 1φ φ− +− = −∑  

 
Combining negative and positive energy results we 

can write a compact expression for the orthogonality 
relations satisfied by the wave function as 

 
( ) ( ) ( )*

i , i , E ,E'
i ,

E' E sgn Eµ µ
µ

φ φ δ=∑  

and for the completitude relation 
 

( ) ( ) ( )*
i , i', ' , ' i ,i'

E

E E sgn Eµ µ µ µφ φ µδ δ= −∑  

 
The local spin wave operators ibµ  can be expressed in 

term of canonical operators also: 
 

( ) ( ) ( )*
i i ,

E

b sgn E E A Eµ
µµ φ= −∑           (10) 
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Our task is to solve the eigenvalue equation (10) that 
gives us the spin wave energies for a given spin 
configuration. Through of our calculations we consider 
that the magnetic field is zero. As can be observed the spin 
wave spectrum is symmetric in the sense that both positive 
and negative energy E±  belong to the spectrum. 
 
 

3. Results and discussions 
 
In this section we present the results for the spin wave 

spectrum and for the temperature dependence of the 
magnetization for different strength of the anisotropy and 
simulated annealing times. 
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Fig. 1. Average number of neighbors inside a sphere of  
               radius r  for two spin concentrations. 
 

 
We did calculation for the isotropic case ( )1λ =  and for 
the anisotropic case with preferred parallel alignment 
( )0.5λ =  and perpendicular alignment ( )1.5λ = . Unless 
otherwise specified our results are for 3% Mn  
concentration. We did calculation for 1.5 and 5% 
concentrations with similar results, so are not presented 
here. 
 

Short range model 
 
This model is characterized by a constant coupling 

between the spins and a cut-off range that characterize the 
extension of interaction. In our simulation we have fixed 
the value for the short range cut-off to 12 Å. However, the 
anisotropy coefficient rescales the coupling between the 
spins [8] and introduce an effective coupling which 
depends on the anisotropy parameter λ , and this has to be 
taken into account in the numerical calculations in order to 
get consistent results for the critical temperature. The 
critical temperature depends also on the number of 
neighbors in the system. In Fig. 1 we present the number 
of neighbors inside a sphere of a given radius for two 
different spin concentrations. This result was obtained as 
an average over a 500 samples. 
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Fig. 2. Spin waves density of states for the short range 
model. Top: the effect of anisotropy is presented for a 
non-relaxed lattice with relt 0= . Bottom: The effect of 
annealing   in   a   anisotropic    system    with   preferred  
                           perpendicular alignment. 

 
 

The effect of low coordination number is felt also in 
the SWS. In Fig. 2 we present SWS and magnetization 
curves for isotropic and anisotropic systems for an 
unrelaxed sample. Frustration has a small effect on both 
temperature dependence of magnetization and on spin 
wave spectrum. The effect of simulated annealing time is 
more drastic.  As we increase the relaxation time, the spin 
wave spectrum starts to shrink and extends up to the 
maximum energy that is allowed in the system for a spin 
wave in a perfectly ordered lattice. In this case an 
expression for the dispersion relation as function of the 
momentum k

r
 can be written: 

( )( )k effE 2J Sz 1 1 / z exp ik
δ

δ= − ∑
r r

            (11) 

Here, the sum is over the neighbors and z is the 
number of neighbors in the lattice. So the energy range 
allowed for the spin waves is ]4.0[ zeff SJE∈ . For the 
particular case that we consider the number of neighbors 

for our fixed cut-off cR 12 A
°

=  is z 4 5≅ ÷  when Mn  
concentration is fixed to 3%. This behavior can be 
understand by considering that as the relaxation time relt  
increase, the lattice becomes a bcc lattice with point 
defects and the upper limit of the spectrum moves to the 
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maximum allowed value for a perfect lattice. For 
unrelaxed samples the disordered effects broaden the spin 
wave spectrum by shifting it up to higher energies. The 
temperature dependence of magnetization is presented in 
Fig. 3. The anisotropy parameter λ  does not have a strong 
influence on these curves also in agreement with the 
results of Ref.[8]. 

The relaxation time relt  has a much stronger influence 
on the magnetization curves also. Two major effects are 
observed when increasing the relaxation time in both 
isotropic and anisotropic cases. First, an increase of 
magnetization at T 0=  is observed so the ground state 
moves towards a collinear state as the lattice becomes 
more ordered, and secondly the critical temperature cT  is 
shifted to lower values. 
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Fig. 3. Temperature dependence of magnetization for 
short range model. Top: the effect of anisotropy is 
presented on the magnetization curves for a un-relaxed 
lattice with relt 0= . Bottom: The effect of relaxation for 
a anisotropic lattice with parallel preferential alignment. 

 
 
 

Long range model 
 
In this model a single spin is interacting with all the 

other spins in the lattice. However the coupling is 
decaying fast with the distance and this lead to a smaller 
critical temperature as compared to the short range model.  
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Fig. 4.  Spin waves density of states for long range model. 
Top: The anisotropy effect is presented for a unrelaxed 
sample. Bottom:  The effect of  relaxation on the SWS for an  
                  anisotropic system with 1.5λ = . 

 
 

In Figs. 4, we present the result for the SWS in the 
case of long range model. Here the spectrum is much 
narrow as compared with the previous case and this is due 
entirely to the fast decay of the coupling. Interaction 
between spins separated by large distances generates a tail 
in the SWS which extends up to very large energies. The 
effect of anisotropy on SWS is small also. A much 
stronger effect is felt by the magnetization curves of a 
unrelaxed systems. For isotropic case the ground state is 
fully polarized at T=0 for both relaxed and unrelaxed 
samples. For unrelaxed anisotropic systems the ground 
state is no longer collinear and this effect is enhanced in 
the systems with parallel preferential alignment. For large 
enough relaxation times the ground state is becoming 
collinear also. Here an increase in relt  leads to a decrease 
of cT  similar with the SR model. 
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Fig. 5. Temperature dependence of magnetization, for the 
long range model. Top: Anisotropy effect for an                    
un-relaxed sample.   Bottom: Magnetization for  different  
                 annealing times for a system with. 

 
 

The effect of relt  on SWS is to shrink the energy 
range of the spectrum as relt  increases. This is due to the 
fact that Mn  spins tries to maximize the distance between 
them, when relaxing the lattice. LRM has a large 
coordination number therefore the effects of frustration 
due to anisotropy are observed in T 0=  magnetization 
value. The effect of frustration on spin wave collective 
modes is less significant. 

 
 
RKKY model 
 
The final results are for RKKY model which allows 

the interaction between all the spin in the lattice with 
oscillating sign depending on the Fermi wave-vector Fk . 
This quantity is different for different hole fraction. In Fig. 
6 we present the results for the temperature dependence of 
magnetization and for SWS corresponding to this model 
with different hole fractions. For 5% Mn  impurities 
concentration the ground state at T 0=  is fully polarized 
as can be seen from the magnetization curves. As we 
decrease the concentration the ground state becomes non-
collinear. 
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Fig. 6. Top: Temperature dependence of the 
magnetization for a RKKY model for different relaxation 
times and for different hole concentrations. Bottom: The 
effect of simulated annealing on the spin wave spectrum. 
Results are presented  for hole  fractions f 0.2=  and  

                                       f 0.4= . 
 
The overall behavior for SWS compared with the 

previous models is completely different due to the 
oscillating sign in the coupling. The same oscillating sign 
is responsible for removing the extended tail in the 
spectrum at large energies as compared with the long 
range model, and for the oscillating part of the spectrum at 
small energies. The upper energy limit moves to lower 
energies as we increase relt . Doping plays an important 
role in the sense that doubling the hole fraction from 0.2  
to 0.4 , the spectrum shrinks by a factor of 2 also, and this 
effect is entirely due to the modification of the Fermi wave 
vector amplitude Fk  with doping. 

 
 
4. Conclusions 
 
We have study three phenomenological models which 

are representative for understanding the magnetic behavior 
of magnetic semiconductors. We used a anisotropic 
disordered Heisenberg model with different radial 
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interaction behaviors to model the magnetic properties of 
DMS.A comparison between the short-range, long-range 
and RKKY models may clarify the role played by the 
range of the interaction and also the importance of the 
exchange interaction sign. We have calculated the spin 
wave spectrum of these phenomenological models, and 
study the effect of anisotropy and of annealing on SWS. 
Our simulations demonstrate that annealing strongly 
affects the spin wave spectrum, and the magnetization 
curves.  The increases of relaxation time leads to an 
arrangement of the localized Mn  moments in a periodic 
lattice with defects, and the spin wave spectrum evolves 
toward the spectrum of a perfectly ordered lattice. On the 
other side anisotropy is less important for the SWS, a 
much stronger effect is observed on temperature 
dependence of magnetization for the unrelaxed samples. 
The unrelaxed samples have a non-collinear ground state 
and therefore the anisotropy plays an important role. 
Relaxing the lattice the ground state becomes practically 
collinear (see magnetization curves) and the anisotropy 
role gets weaker.  
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