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The superconductivity in 2MgB  is analyzed inside a two band model. The model consists in self-consistent calculation of 
the gap and effective mass renormalization functions of Eliashberg equations. We present the frequency dependence of the 
two functions, and the temperature dependence of the two energy gaps, revealing the superconducting transition 
temperature cT . The results show the role of the strong electron – phonon coupling in superconductivity of 2MgB  via high 

frequency phonons of 2 gE  mode. The superconductivity mainly originates in the quasi 2D σ  band, being driven from 

interaction inside the boron layer. The out of plane interaction is weaker and the 3D π  band has a smaller contribution to 
superconductivity. 
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1. Introduction 
 
Since the discovery of the superconducting transition 

in 2MgB  [1], the high value of the critical temperature,  
Tc ~ 39 K, the highest ever achieved for a binary 
compound and above the theoretical predicted value from 
BCS  theory [2], was the starting point for an intense 
dispute in scientific community. The main problem which 
required an answer was if this compound should be 
considered as a ”classical” superconductor, or as a new 
type of high temperature superconductor ( HTS ). A large 
amount of experiments [3] suggests that strong electron – 
phonon interaction is the adequate mechanism which 
describes its superconductivity. For understanding this 
mechanism, it’s important to briefly analyze the spatial 
and band structure of this compound. The spatial structure 
of 2MgB  is a simple hexagonal layered structure 
( 6P / mmm  space group), consisting of hexagonal 
graphite-type boron layers, separated by hexagonal layers 
of magnesium, such a layered structure being close to the 
structure of high- cT  cuprates. Its electronic structure is 
similar to that of the graphite. As determined from band 
calculations [4], the main contribution to the 
superconductivity is due to the boron, arising from the two 
incomplete filled of bonding-type σ  bands, due to in-
plane (in boron layer) 2sp  ( x ysp p ) hybridization, and 
two π  bands of bonding and respectively antibonding 
types, due to the aromatically hybridization of the boron 

zp  orbitals. 
Useful information regarding the band structure was 

obtained from the investigation of the Fermi surface in 

ARPES  [5] and de Haas-van Alphen effect [6] 
experiments. The large in-plane overlaping of the p  
orbitals compared with the interlayer overlaping leads to a 
strong in-plane dispersion and a smaller one out of boron 
layer, consisting in a very small zk  dispersion of the σ  
bands. This weak dispersion give rise to Fermi surface 
sheets associated to the unfilled σ  bands, hole-type, 
nearly cylindrical around − AΓ  direction in BZ . In 
contrast, the π  bands correspond to the two planar tubular 
networks of Fermi surface sheets: an antibonding, 
electron-type sheet, centered at 0=zk  and a bonding, 

hole-type sheet, centered at =zk / cπ  [7]. The 2sp  
hybridization in boron layer leads to a strongly covalent 
bonding and the holes from the top of σ  bands are 
localized within the layer, having a 2D  character. In 
contrast, the electrons and holes from π  bands are 
delocalized over the entirely crystal, having a 3D  
metallic-type behavior. As consequence of the coexistence 
of the two types of conducting bands, the total DOS  at 
Fermi level consists in a sum of contributions originated in 
the every bands. The cylindrical (2D covalent bonding) 
and tubular (3D metallic bonding) sheets of Fermi surface 
contribute about 42%  and 58%  respectively, in a ratio 

0 73N / N .σ π ≅  [8]. 
A major challenge in the study of superconductivity in 

2MgB  was the investigation of which of single, or two 
bands mechanism is implied in superconducting transition. 
For this purpose, the existence of a single or two energy 
gaps was investigated in a large amount of experiments. 
Some earlier experiments, as Scanning Tunneling 
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Spectroscopy ( STS ) [9,10], Far Infrared Transmission 
( FIRT ) [11], Raman Spectroscopy ( RS ) [12], High 
Resolution Photoemission Spectroscopy ( HRPS ) [13], or 
Point Contact Tunneling Spectroscopy ( PCS ) [14] have 
proved the existence of a single energy gap of magnitude 
between ÷2.5 5  meV. Other experiments as STS                
[15-17], PCS  [18], HRPS  [19], RS  [20] or specific 
heat measurements [21,22] claimed the necessity of 
admitting two energy gaps for explanation the results. All 
these experiments together with the high isotopic effect 
due to the boron, confirm that in 2MgB , the appearance 
of superconductivity is due to the strong −s wave  type 
interaction of the pseudoparticles with phonons in 
intermediate, or even strong coupling [23,24]. A more 
recent ARPES  experiment [25] reports the direct 
experimental evidence of the two band superconductivity 
in 2MgB  from separately observing distinct gaps in σ  
and π  bands of the boron. The existence of the two gaps 
having different magnitudes = −6 7meVσ∆  and 

≅ 2meVπ∆ , unambiguously established the two band 
nature of the superconductivity in this material. In 
understanding the appearance of the superconductivity, the 
key role is played by the pairing interaction of the 
quasiparticles with phonons modes described by the 
density of state F( )ω  and Eliashberg function 

2F( )α ω . First principle calculations for the phononic 
spectrum [26] showed four important phonon modes: 
firstly, two associated with vibrations in the Mg - Mg  
plane: 1uE  ( 40meV ) for vibrations in x y−  directions 
and 2uA  ( 49meV ) for vibrations in z  direction, and 
secondly, two associated with vibrations in B B−  plane: 

2 gE  ( 67meV ) for in plane vibrations and 1gB  

( 87meV ) for in z direction, out of plane vibrations of the 
boron atoms. From these calculations, a sharp and narrow 
peak is observed in 2F( )α ω , at the frequency of the 

2 gE  mode, leading to the result that the pairing interaction 

is mostly associated with the 2 gE  mode corresponding to 
the in boron plane vibrations. As a conclusion, the σ  band 
with stronger electron-phonon coupling via the 2 gE  

mode, associated with in-plane −B B  vibrations, has the 
dominant role, while the π  band, characterized by weaker 
coupling with phonons corresponding to out of plane 
vibrations, have more minor contribution to the 
superconductivity, but the superconductivity originates in 
each band due to intra and interband processes. 

 
 
2. Theoretical model 
 
In order to describe this compound, the theoretical 

model should be based on the electron-phonon coupling 
( EPC ) interaction. A two gap model, based on EPC  

calculations, was developed by Kortus et al. [4] and Liu et 
al. [27]. The two band model based on Eliashberg 
equations was almost generally accepted and used by 
different authors. This model is a simplified model of the 
real four bands model, but it is a valid one, taking into 
account the similarities between the two 3D  Fermi sheets 
and between the two 2D  Fermi sheets. Based on them, 
when a strictly band calculation is not necessary, for the 
determination of cT  and for the gap functions, as in 
present study, there can be considered only a distinct gap 
for every 2D , and respectively 3D  sets of bands. Joas et 
al. [28] applied this model with a phonon spectral density 
F( )Ω  having two peaks centered at 1 24meVω ≅  for 
the π  band and 2 67meVω ≅  (the phononic 2 gE  mode) 
for the σ  band, in order to explain tunneling experiments. 
In other studies [29,30], were deduced the temperature 
dependencies of the gap functions σ∆  and π∆ . 

Here, we present a study of the two band Eliashberg 
model, for deducing self-consistently the gap and effective 
mass renormalization functions. The frequency response 
of these functions could offer useful information about the 
phononic coupling in appearance of the superconducting 
transition. This model is applied for deducing the 
temperature dependence of the two energy gaps in the 
superconducting state, revealing the superconducting 
transition and the value of the critical temperature, cT . 

There were two ways for the solving of Eliashberg 
equations. First of them was to solve the equations which 
contain dependencies of real frequency [31], and the 
second to solve this equations on the imaginary axis, 
summing on Matsubara frequencies [32]. In this case is 
needed an analytical continuation in order to obtain the 
dependencies on real frequency. In this paper is adopted 
the second way. We will start this analysis with the 
Eliashberg equations for a two band superconductor [29] 
which are similar in form with the case of a one band 
model. In this case will need four equations, two for the 
gaps and two for the renormalization functions, each 
corresponding to one of the two bands, σ  and π : 
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(1) 
In Eq. (1) ( )i ni∆ ω  are the superconducting order 

parameters of the σ  ( i σ= ) and π  ( i π= ) bands, 
( )i nZ iω  are the corresponding mass renormalization 

functions and ijµ∗  are the coulombian pseudopotentials. 
The sum is over the odd (fermionic) Matsubara 
frequencies ( )m m 1 / 2 Tν π= +  and over the indexes 
j ,σ π=  in order to include both intra and interband 

processes. The electron-phonon coupling ( EPC ) matrix 
element ijλ  is defined as: 
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where 2
ij F( )α Ω  are the Eliashberg spectral functions 

corresponding to each band. Considering the EPC  as a 
matrix we assure to consider both intra and interband 
processes. For calculate these matrix elements the way of 
choosing the Eliashberg spectral functions is essential. C. 
P. Moca [29] analyzed a comparison between the 
temperature dependencies of the gaps in two different 
cases: the real Eliashberg spectral functions calculated in 
ref. [33] and a model function generated by a lorentzian 
dependence centered on the 2 gE  mode, but weighted for 
the each intra or inter band process with the appropriate 
factor, 2

ijα . Using the same 2
ijα  factors and the same 

values for the pseudopotentials ijµ∗  the results were 
similar. We use here this conclusion, working with a 
lorentzian model function weighted for intraband and 
interband interactions as described above, with a 
maximum at 64 meV  and a cut off interval of 30 meV  
.The coulombian pseudopotential matrix elements, with 
values in agreement with that calculated in Ref. [34], were 
considered in a simple approximation, only for intraband 
processes: 0.1σσ ππµ µ∗ ∗= =  and 0σπ πσµ µ∗ ∗= = . The 
values for all parameters were chosen in order to obtain a 
good fit of experimental data in temperature dependencies 
of the gaps. 

 
 
3. Results and discussions 
 
As starting point, the two gaps were chosen 

7.5 meVσ∆ =  and 3.5 meVπ∆ = . With these values, at 
every temperature, in the Eqs. (1) were done summations 
over 1024 frequencies and the results were introduced 
again in equations, the process being stopped when the 
self-consistency of the gap functions was achieved. These 
solutions depending on imaginary frequency were 
numerically continued on real axis using Padé algorithm, 
and finally were obtained the dependencies on real 
frequency. The obtained dependencies at T=4.2 K  are 
presented in Figs. 1. a and b. 
 

 
a 

 
 
b 

Fig. 1. Frequency dependence of the gap functions σ∆  

(a) and π∆  (b) at the temperature T=4.2 K . The 
values of parameters used for these graphs were chosen 
as explained in text: 17.7σσα = , 6.5ππα = , 

1.0σπα = , 2.0πσα =  and the frequency of the 

phonons    modes    corresponding   to  the   2 gE    mode  

                                     64 meVω = . 

 
These curves are clearly connected with the electron – 

phonon coupling. As can be seen, the dependencies of 
Re∆  for the both two bands from Fig.1 present a 
maximum with a sharp slope at the chosen frequency 
64 meV (phononic 2 gE  mode). Above this frequency, 
the curves changes their sign due to the over screened 
pairing interaction. The imaginary part of the gap 
functions is an indicator of the phonon spectrum, starting 
to increase above the peak value of the 2 gE  mode, due to 
the process of phonons generation. In plus, the 
dependencies are very similar, σ∆  being three times grater 
than π∆ . This result confirms the assumption of weaker 
coupling by the phononic 2 gE  mode in π  band, 
comparing with the σ  band.  

The interaction with the phonons modes is clearly 
seen, also, in frequency dependencies of the mass 
renormalization functions, presented in Fig. 2. 

The frequency dependencies of the real and imaginary 
part of the mass renormalization function can be 
considered as an image of the EPC  strength. For the both 
bands, is evident a peak around the value of the 2 gE  
mode. These graphs lead to the same conclusion as those 
from Fig. 1, regarding the role of the in boron plane 
vibrations on pairing interaction of quasiparticles. The 
larger value of mass renormalization in σ  band is 
illustrative for the larger coupling strength in this band. 
The result is in accordance with the larger value of the gap 
in σ  band and suggests that the superconductivity mainly 
occur in this band, while in the π  band it could be 
considered as induced from σ  band via interband 
scattering. 
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a) 
 

 
b) 

Fig. 2. Frequency dependence of the mass 
renormalization functions Zσ  (a) and Zπ  (b) at the 

temperature T=4.2 K . The values of the parameters 
of the model were the same as  for  the gap  dependencies  
                           represented in Fig. 1. 

 
 

The validity of the model can be verified by direct 
comparison with experimental results. This comparison is 
possible for the temperature dependence of the gaps inside 
the two bands, being shown in Fig. 3. As can be seen, the 
theoretical calculated dependencies in our two band model 
fit very well the experimental measurements for the both 
gaps dependencies on temperature in superconducting 
state. 

In above mentioned paper, Joas et al. [28] chose two 
peaks in phonon spectrum, each for each band: one of low 
energy ( 24 meV≅ ) for the π  band and other of high 

energy ( 2 g67 meV E≅ −  mode) for the σ  band. They 

found similar shape of the curves, but notable differences 
between the graphs inside the σ  and the π  bands. They 
concluded that the superconductivity originates in both 
bands as an effect of the strong interactions with phonons 
described by the two modes. From our study, the very well 
fit of experimental data by the graphs from Fig. 3 can be 
considered a strong argument on the role of the phonons of 

2 gE  mode in superconductivity of 2MgB . 

 
 

Fig. 3. Temperature dependence of the energy gaps for 
both  the  two  bands.   The   experimental  results,   were  
              subtracted from Refs. [3], [15], [18], [19].  

 
A very useful result for the investigation of the 

electron-phonon coupling strength is the factor 
c2 (0 ) / T∆ . From the results represented in Fig. 3, the 

obtained values for the gaps were: ( 0 ) 7.8 meVσ∆ =  and 
( 0 ) 2.5meVπ∆ = . The critical temperatures were 

slightly different, being cT 37K≅  for σ  band and 

cT 36 K≅  for π  band. The values differ from some 
experimental results, but are in good agreement with 
others [3, 31]. With these values, we found 

c2 ( 0 ) / T 4.8σ∆ ≅  and c2 (0 ) / T 1.7π∆ ≅ . It is evident 
that the first value is much grater and the second much 
smaller than the weak coupling BCS -type value 

c2 (0 ) / T 3.5∆ = . It can be considered an argument for 
the intermediate or even strong electron - phonon coupling 
scenario in explanation of the superconductivity in 

2MgB . 
 
 
4. Conclusions 
 
In this paper, we report results obtained from 

numerical calculation performed inside a two band 
Eliashberg model. The model is based on the existence of 
the two different Fermi sheets: a quasi 2D  cylindrical 
surface corresponding to the interaction of the xp  and yp  

orbitals of B inside the boron layer, and a 3D  tubular 
network corresponding to the interaction of the zp  
orbitals of B. In explanation of the superconductivity in 

2MgB , the obtained results confirm the correctness of the 
assumption that the electron-phonon coupling is mainly 
due to phonons of 2 gE  mode for both two bands. All 
frequency dependencies for the gap and mass 
renormalization functions reveal that the interaction in the 
π  band should be considered more induced from 
interaction between electrons and high energy phonons 
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inside the σ  band via interband scattering. The obtained 
ratio c2 (0 ) / T∆  in the two bands, in good agreement 
with experimental data, is higher in the σ  band and lower 
in the π  band than the weak coupling BCS -type value, 
suggesting that for 2MgB  is applicable the strong electron 
– phonon coupling approximation. 
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