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The length-scale dependence and critical behaviour of vortex dynamics in high transition temperature superconductors 
(HTSC) are studied by means of renormalization group and by electrical transport methods. We present some current 
transport measurements on Bi2Sr2CaCu2O8 single crystals which indicate the need for a better description of the length-
scale dependence of the vortex response in layered systems. Due to the weak coupling between the superconducting 
copper oxide layers and extremely high anisotropy of HTSC materials, the layered XY model is one of the most accepted 
model which describes the vortex-dominated properties of layered superconductors. The layered XY model can be mapped 
into the layered sine-Gordon model. We perform a renormalization group analysis of the layered sine-Gordon model and 
show that the model exhibits a Kosterlitz-Thouless type phase-transition. 
 
(Received December 2, 2005; accepted May 18, 2006) 
 
Keywords: High temperature superconductivity, Vortex dynamics, Renormalization group, Sine-Gordon model 
 
 

1. Introduction 
 
The vortex dominated properties of high transition 

temperature superconductors can be considered by several 
theoretical and experimental techniques. Electrical 
transport measurement is a powerful experimental method 
to investigate the length-scale dependence and critical 
behaviour of vortices in layered systems. HTSC materials 
usually consist of copper-oxide superconducting planes 
separated by insulating layers. The CuO2 planes interact 
with each other through Josephson coupling. Due to this 
weak coupling, especially in case of extremely high 
anisotropy like in Bi2Sr2CaCu2O8 (BSCCO), one of the 
commonly accepted model is the layered XY model where 
the weak interlayer coupling is given by a Lawrence-
Doniach type term. The topological excitations in 
superconducting layers are vortex-antivortex pairs which 
can form vortex loops and rings by Josephson coupling. 
The layered XY model can be mapped onto the layered 
sine-Gordon model which is a two-dimensional quantum 
field theory where two sine-Gordon (SG) models are 
coupled [1]. The vortex dynamics and critical behaviour in 
layered superconductors can be considered by mapping 
out the phase structure of the layered XY and layered SG 
models. 

The critical behaviour and phase structure of the 
layered XY and the layered SG model are investigated by 
means of various renormalization group (RG) methods 
using the dilute gas approximation [1]. One of the most 
complete and rigorous theoretical RG study of weakly 
coupled superconducting layers has been done by S.W. 
Pierson and his co-workers [1] using real-space and 
momentum-space RG methods. They obtained four 
regions in the current-temperature phase diagram where 
different correlation lengths between vortices determine 
the behaviour of the system. 

The purpose of this paper is twofold. On the one hand, 
we analyse our recent experimental data obtained by 
secondary voltage measurements on BSCCO single 
crystals [2] in terms of the above theoretical predictions. 
We demonstrate that while below TC, where TC is the zero 
field 3D/2D dimensional transition temperature, the 
theoretical results are supported well by experiments, 
above TC they differ from each other. This indicates the 
need for a better description of length-scale dependence of 
the vortex dimensionality at 3D/2D crossover.  

On the other hand we perform an RG analysis for the 
layered SG model using the Wegner-Houghton RG 
method [3] in order to go beyond the dilute gas 
approximation and to achieve a better description of vortex 
dynamics. 

 
 
2. Theoretical model. The layered  
    sine-Gordon model 
 
The vortex dynamics of HTSC materials can be 

considered in the framework of the anisotropic Ginzburg-
Landau (GL) theory of superconductivity. The GL theory 
was developed by applying a variational method to an 
assumed expansion of the free-energy in powers of the 
local density of superconducting electron pairs which 
serves as a complex order parameter. In case of strong 
anisotropy, in the absence of fields and assuming that the 
amplitude of the order parameter is identical in each layer, 
the total free energy of the system reads as follows 
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where nφ  is the phase of the order parameter. In this 
equation n runs from 1 to the total number of layers. The 
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parameters of the model are abmJ /1≈ΙΙ  and 

cmJ /1≈⊥ , where mab and mc are the effective masses. 
The last term is related to the Lawrence-Doniach term, in 
which the coupling between the layers is the Josephson 
coupling. Expanding the cosine term in Taylor series 
around zero, one arrives at the layered or quasi two-
dimensional XY model [1] 
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The layered XY model can be mapped onto a coupled 
sine-Gordon type model, it is called layered SG model, 
which in case of two layers has the following Lagrangian 
[4] 
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where 1φ , 2φ  are one-component scalar fields, u is the 

fugacity parameter of the vortices, ΙΙ⊥= JJJ  is the 

coupling between the two SG models and ΙΙ= Jβ  is 
related to the temperature. Both are dimensionless 
coupling constants. For J=0 the layered SG model is 
reduced to two un-coupled SG models. 

The critical behaviour and phase structure of the 
layered XY and layered SG models have been considered 
by various RG methods (e.g. anisotropic smooth cutoff 
momentum space RG analysis, real space RG) using the 
dilute gas approximation which assumes that the fugacity 
of the vortex gas (coupling constant u) is small [1]. The 
common result of the various RG analysis can be 
summarised as follows. Three characteristic critical 
currents or temperatures TUB, TC and TC2 were found 
(TUB<TC<TC2). These results can be applied to explain the 
experimental current transport properties. Below TUB the 
current is not strong enough to overcome the Josephson 
attraction and, so, vortex depairing is not possible. 
Between TUB and TC one can have thermally activated 
depairing of vortex loops. In this temperature range the 
Josephson coupling is finite, therefore the motion of free 
vortices in the upper layers is transmitted to the bottom 
layers and the vortices form vortex lines. The vortex 
system is three-dimensional, the current distribution is 
homogeneous. The system undergoes a Kosterlitz-
Thouless type phase transition. Above the transition 
temperature TC but below TC2 individual vortices can be 
spontaneously created and the layer decoupling begins. 
The vortex system is not purely three-dimensional and the 
current density becomes inhomogeneous. Above TC2 but 
below the Ginzburg-Landau transition temperature TC0 the 
layers are completely decoupled, therefore one expects a 
two-dimensional behaviour. We would like to emphasis 
that the critical temperature TC which separates the two 
phases of the layered system is found to be independent of 
the number of layers. 

3. Results and discussion 
 
3.1. Electrical transport measurements 
 
Electrical transport measurements were performed on 

Bi2Sr2CaCu2O8 single crystals. The chemical 
inhomogeneity and surface smoothness of the optically 
smooth rectangular crystals were measured by microbeam 
PIXE and atomic force microscopy, respectively. The 
superconducting quality of the samples was checked by 
DC and AC magnetization measurements. The mean-field 
Ginzburg-Landau transition temperature of the samples 
was 86÷88 K. The sample dimensions were about                 
1×1.5 mm2, the thickness was between 8 and 3 µm. 
Electrical contacts to the surface of the samples were made 
by bonding 25 µm gold wires with Dupont 6838 silver 
epoxy. The contact resistance was a few ohms. Two 
current and potential electrodes were attached to both 
faces of the crystals. The current was injected into one 
face of the crystal through the current contacts. This is the 
primary current IP. The voltage measured on the opposite 
face of the crystal where the current was injected is the 
secondary voltage VS. In our experiments we measured the 
secondary voltage as a function of temperature and current 
density. More detailed description of the experimental 
arrangement is given in Ref. [2]. In Fig. 1 we show the 
temperature dependence of the secondary voltage 
measured on a BSCCO single crystal in zero magnetic 
field with different transport current. The measurement of 
secondary voltage gives a possibility to study the vortex 
dimensionality experimentally at the 3D/2D 
superconducting phase transition which is assumed to be a 
length-scale dependent layer decoupling process. 
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Fig. 1. Temperature dependence of the secondary voltage 
of a Bi2Sr2CaCu2O8 single crystal measured with 
different current. TC and TUB are the critical temperature 
and unbinding temperature, respectively. The inset shows  
    the current dependence of the unbinding temperature. 

 
In 2D superconducting layers the phase fluctuation of 

the order parameter generates vortex-antivortex pairs as 
topological excitations. The phase transition in an isolated 
2D superconducting layer, where the vortex-antivortex 
pairs are bound below the phase transition temperature and 
are unbound above it, is described by the Kosterlitz-
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Thouless theory [5]. In high-temperature superconductors, 
the high transition temperature, short coherence length and 
layered structure make the phase fluctuation of the order 
parameter dominant over the other fluctuations in the 
transition temperature range, but the coupling between 
superconducting layers modifies the 2D Kosterlitz-
Thouless picture. The interaction between superconducting 
layers leads to vortex-antivortex interaction different from 
the 2D case. E.g. the 3D phase appears, where the 
coupling between neighbouring layers arranges the 
thermally excited pancake vortices into 3D flux lines. 
These 3D flux lines can form vortex loops as correlated 
vortex-antivortex line pairs. They are called thermally 
activated vortex loops, because they are the result of a 
combined effect of thermally activated vortex excitation 
and interlayer vortex coupling. 

The 3D character modifies the structure of the phase 
transition between the bound and unbound states: a narrow 
3D window appears around the phase transition 
temperature TC and a nonzero critical current also appears 
[1]. Above the phase transition temperature the behaviour 
of vortices becomes 3D/2D due to decoupling of the 
superconducting layers (3D/2D phase transition). This 
layer decoupling is a length-scale-dependent process: the 
layers become decoupled at length scales larger than an 
interlayer screening length, while for lengths below this 
scale they remain coupled. In the 3D regime below TC the 
electrical transport behaviour is dominated by vortex 
loops, above TC it is dominated by vortex lines and 
pancake vortices.  

In zero applied magnetic field the secondary voltage 
originates from thermally activated vortex loop unbinding. 
At low temperatures where VS is zero, the thermally 
excited 3D flux lines form vortex loops which are 'pinned' 
to the crystal. With increasing temperature, the transport 
current splits these vortex loops into free vortex-antivortex 
line pairs. The temperature where this splitting starts is the 
unbinding temperature TUB. Above the unbinding 
temperature the free vortices move in the sample like 3D 
vortex lines due to the Lorentz force, producing the same 
voltage drop on the primary and secondary side of the 
crystal. This 3D character of the vortex lines remains up to 
TC where the secondary voltage has a local maximum. 
With increasing temperature the 3D character of flux 
motion disappears and VS decreases, but another local 
maximum of VS can be found as the temperature 
approaches the mean-field Ginzburg-Landau transition 
temperature. Consequently the temperature dependence of 
the secondary voltage has two peaks with a higher and a 
lower amplitude. This experimental result contradicts the 
predictions of the theoretical RG analysis [1] above TC 
which indicates the need for a better description of the 
vortex dynamics in layered systems. 

This double peak structure of secondary voltage can 
be explained by the motion of different types of vortex 
lines. In zero applied magnetic field free vortex lines can 
be produced in two ways. First, they can be the result of 
vortex-antivortex depairing of thermally activated vortex 
loops due to the Lorentz force of the transport current. In 
this case the number of free vortex lines and the unbinding 

temperature depend on the transport current density. 
Secondly, free vortex lines can be spontaneously created 
by thermal activation, mainly above TC. While the 
maximum of VS increases, TUB decreases with the increase 
of current density, as it can be seen in Fig. 1. 

 
3.2 Renormalization group analysis 
 
In order to map out the phase structure of the layered 

system, we perform an RG analysis for the layered SG 
model by means of the differential RG approach in 
momentum space where the blocking transformations are 
realized by successive elimination of the field fluctuations 
according to their decreasing momentum in infinitesimal 
steps. The high-frequency modes are integrated out above 
the moving momentum cut-off k and the physical effects 
of the eliminated modes are encoded in the scale-
dependence of the coupling constants. The elimination of 
the modes above the moving scale k is complete in 
Wegner's and Houghton's method (WH-RG) [4] because 
of the sharp momentum cut-off. The WH method provides 
a functional RG equation for the blocked action. In order 
to solve the WH-RG equation, one has to project it to a 
particular functional subspace. Therefore, one generally 
assumes that the blocked action contains only local 
interactions, expands it in powers of the gradient of the 
field, and truncates this expansion at a given order, for 
technical reasons. Here we restrict ourselves to the leading 
order of the gradient expansion, i.e. to the local-potential 
approximation (LPA). The WH-RG equation in LPA has 
been derived for two interacting scalar fields in Ref. [4] 
and can be written as 

[ ]2122211
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where ),( 21 φφkV  is the dimensionless blocked potential, 

k is the moving momentum cut-off, ),( 21 φφij
kV  is the 

derivative of the potential with respect to the fields ji φφ , . 
The dimensionless blocked action for the layered SG 
model reads as 
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where the dimensionless blocked potential is 
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Notice, that all the scale-dependence is encoded in the 
coupling constants J(k) and u(k). It is also important to 
note that the period lengthβ  has no scale-dependence due 
to the usage of LPA [4]. Inserting the ansatz (6) into the 
WH-RG equation (4) and separating the periodic and non-
periodic part, the following differential equation is 
obtained for the coupling J 

0)()2( =∂+ kJk k                      (7) 

with the solution 22)( −−
Λ Λ= kJkJ , where ΛJ  is the 

initial value given at the high-energy (ultra-violet, UV) 
cut-off Λ . Therefore, the coupling J is a relevant 
(increasing) parameter if the momentum cut-off goes to 
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zero ( 0→k ). In order to obtain RG equation for the 
coupling u, one has to expand the periodic part of the WH-
RG equation in Fourier series and read off the differential 
equation for u which can be solved numerically. It is 
possible to obtain analytic solutions for u using various 
approximations. Linearizing the logarithm in the WH-RG 
equation (4) around the Gaussian fixed point ( 0≡FPV ) 
the following RG equation is obtained  
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where Λu  is the initial value at the UV cut-off Λ . When 

0→k , for πββ 822 => C  the coupling u(k) runs to 

zero and for 22
Cββ <  the coupling u(k) becomes 

infinitely large. The system undergoes a phase transition 
with the critical value πβ 82 =C . In this approximation 
scheme, which is equivalent to the dilute gas 
approximation used in Ref. [1], the critical value is 
independent of the coupling J. Therefore, this phase 
transition is equivalent to the well-known Kosterlitz-
Thouless phase transition of the SG model (the layered 
model with one layer). 

Better approximation can be achieved by 
incorporating the effect coming from the presence of the 
coupling J. Since the interaction term which describes the 
coupling between the two SG models can be considered as 
a mass term, the approximation is called mass-corrected 
UV approximation. The mass-corrected UV RG for u is 
discussed in Ref. [4] and reads as 
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where ΛJ  is constant. The solution is read as 
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The mass-corrected UV RG predicts two phases for 

the layered SG model, if πββ 1622 => C  the coupling 
constant u(k) is an irrelevant (decreasing) parameter, and 
if πββ 1622 =< C  it becomes a relevant (increasing) 
coupling. The importance of this result is the modification 
of the critical value from πβ 82 =C  to πβ 162 =C  which 
separates the two phases of the model. The numerical 
solution of the full WH-RG equation (4) which goes 
beyond the approximations is in progress and the first 
results fully support this conjecture. Therefore, our RG 
approach which goes beyond the dilute gas approximation, 
predicts the modification of the critical temperature of the 

vortex system. In case of one layer the critical value is 
πβ 82 =C , and for the layered model in case of two layers 

πβ 162 =C . This result might suggest the dependence of 
the transition temperature on the number of layers. 
 

4. Conclusions 
 
In this paper we analysed the length-scale dependence 

and critical behaviour of the vortex dynamics in HTSC 
materials. We present current transport measurements on 
BSCCO single crystals which indicate the need for a better 
description of length-scale dependence of the 3D/2D 
crossover in vortex dimensionality. Due to the weak 
Josephson coupling between the copper oxide 
superconducting planes, a high temperature 
superconductor has a strongly anisotropic layered 
structure. The critical behaviour of the vortices in layered 
systems can be studied by means of RG analysis of the 
layered XY or layered SG models. Here, we considered 
the phase structure of the layered SG model using the 
Wegner-Houghton RG approach. This allows us to go 
beyond the dilute gas approximation [1] and to achieve a 
better description of vortex dynamics in HTSC materials. 
Our results suggest the dependence of the critical 
temperature which separates the two phases of the model 
on the number of layers. 
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