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It is analysed the possibility to determine the relaxation parameters and their distributions by use of the Fractional 
Polarization Thermally Stimulated Discharge Current (FPTSDC) technique. For every elementary peak i there is a 
relationship between the activation energy Wi,  the pre-exponential factor τ0i, the temperature of the maximum current of the 
peak Tmi and the heating rate b, that can be used to obtain useful information concerning the values of the relaxation 
parameters or about their distribution. Realistic data for elementary peaks, in the range of the local β relaxation, are used for 
model simulations to analyze the lower limits below which we cannot discriminate between the existence of a distribution of 
the relaxation parameters and the normal uncertainty intervals. We will assume that at any temperature T the incertitude 
interval in activation energies ∆W is at least equal with ± kT and will determine the incertitude interval for τ0i and for Tmi. The 
minimum or natural incertitude interval for the relaxation parameters will by analysed. As long as the experimental current 
can be fitted with an elementary peak and the uncertainties affecting the relaxation parameters are low, i.e. ∆W ≅ kTm and 
∆τ0  ≅ τ0, the distribution functions cannot be determined accurately.  
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1.  Introduction 
       
The main methods used for characterizing the 

dielectric properties of materials are: (i) alternating current 
(AC) measurements; (ii) isothermal charging and 
discharging current measurement (time domain 
spectroscopy) and (iii) thermally stimulated discharge 
current (TSDC) measurement. The TSDC method is 
widely used for determining the most important 
parameters to characterise the dielectric relaxation process, 
i.e. the activation energy W, the natural relaxation 
frequency α0 (or the pre-exponential factor τ0=1/α0), the 
equilibrium polarization P0 and the distribution functions 
for the pre-exponential factors and/or activation energies.  
The measured current is mainly determined by dipoles 
disorientation [1-4], but we must keep in mind that there is 
a polarization determined by the charge trapped at 
interfaces [1,5-7]. A global thermogram can be 
decomposed, at least theoretically, into a number of 
elementary peaks and consequently a distribution of 
relaxation times, determined by a distribution of pre-
exponential factors and/or of activation energies can be 
assumed. For the time being, it is assumed that the only 
experimental technique allowing the decomposition of a 
distributed relaxation into its elementary processes or in 
subsets of the distributions, is the thermal sampling or 
fractional polarization (FP) or windowing polarization of 
TSDC. The assumption behind such an interpretation of 
the experimental results is that the system contains states 
with fixed relaxation times. Two different behaviour 
patterns are assumed: (i) When Tmi of the maximum of 
each elementary peak i is a function of the conditions of 

polarization, a continuous distribution of relaxation times 
should be observed. This may be particularly true for 
secondary relaxations. (ii) If Tmi is independent of the 
polarization conditions, a discrete distribution of 
relaxation times should be postulated. On the other hand it 
has been claimed for more than 20 years that the 
universality of the non-exponential decay of polarization 
which is observed in many dielectrics results from the 
dynamics of correlated or cooperative systems rather than 
from a distribution of relaxation times [8, 9].  In this case 
it is assumed that the isothermal relaxation time is time 
dependent [8]. 
       A good method to determine the relaxation parameters 
is by fitting the experimental data to the analytical 
expression of the current, using a small number of 
parameters and a small number of constrains on the 
parameters.  The problem of distribution, whichever it is in 
activation energies or pre-exponential factors, is an inverse 
and ill-posed problem that generally cannot be uniquely 
solved. In this respect it is opportune to try and find some 
ways of using clear assumptions and simulations for very 
realistic values of parameters, to obtain information about 
the distributions.  It is necessary to try to understand better 
what information can be obtained from elementary peaks 
analysis.    
      In a previous paper we have analysed the possibility to 
determine the relaxation parameters and their distributions 
by use of the FPTSDC technique in the temperature range 
of the primary (non-local) α relaxation [10].  
       The aim of this paper is to analyse the possibility to 
determine the relaxation parameters and their distributions 
by use of the FPTSDC technique in the temperature range 
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of the secondary (local) β relaxation. It will be employed 
the fact that for every elementary peak i there is a 
relationship between Wi, τ0i, the temperature of the 
maximum current of the peak Tmi and the heating rate b, 
that can be used to obtain useful information concerning 
the values of the relaxation parameters or about their 
distributions. Realistic data for elementary peaks, obtained 
by FPTSDC technique in the range of the local β 
relaxation for polyethylene terephthalate (PET), are used 
for model simulations to analyze the lower limits below 
which we cannot discriminate between the existence of a 
distribution in the relaxation parameters and the normal 
uncertainty intervals in which the values of the relaxation 
parameters are expected. 
 

2.  Background considerations 
 
       The current density measured during the TSDC 
experiment can be written as a function of temperature [1] 
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where P0(Tp) is the equilibrium polarization produced 
during the polarization of the sample at Tp, τ(T) the 
relaxation time, b=dT/dt the heating rate and T0 the initial 
temperature. The maximum current occurs when 
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The relaxation time usually depends on a certain 

number of variable parameter like T, time (when there are 
coupling interactions between the relaxation species like in 
the case of ionically conducting solids [8,9] pressure and 
concentration. In simpler cases only one parameter, such 
as temperature T, is of primary interest. At low 
temperature in the range of the local β relaxation, the 
temperature variation of τ is given by an Arrhenius type 
relation 
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where τ0 represents the relaxation time at infinite 
temperature, W the activation energy of dipole 
(re)orientation. In a first approximation τ0 is considered 
constant. In general τ0 is a function of W, i. e. for a system 
characterized by a compensation behavior [11]. 
       From Eqs. (2) and (3) results  
 

bkT
W

kT
W

mm

1)exp(20 =τ                           (4) 

 
where Tm is the temperature of maximum current of the 
peak. The Eq. (4) shows that W and τ0 are connected. The 

results obtained by taking into consideration only the 
variation or the distribution for one parameter, considering 
the other parameter constant, will conduct to an incorrect 
result. The relaxation time at Tm is 
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It is useful to eliminate the pre-exponential factor τ0  from 
Eq. (1) using Eq. (4). It results for the TSD current density  
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The above relation can be used to determine the two 
adjustable parameters (W and P0(Tp)) by fitting it to the 
experimental profile. P0(Tp)  can be determined by 
integration of the experimental current in order to reduce 
the number of adjustable parameters.  
        Equation (1) can be generalized for the case when 
there is a Distribution in Activation Energies (DAE) that 
in turn will produce a Distribution in Pre-exponential 
Factors (DPF). In general it is assumed that there exists a 
distribution for the relaxation times G(τ). Assuming that 
the resulting TSDC arises from contributions of 
independent and parallel relaxation process, j(T) [see Eq. 
(1)] can be written: 
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The determination of G(τ) is not straightforward. A 
relaxation mechanism with distribution in both W and τ0 
requires an over-parameterized fitting procedure. On the 
other hand Eq. (4) shows that for a particular peak (with b 
and Tm known) any change in W will result in a change in 
τ0. Consequently, any analysis that assumes one parameter 
to be fixed (could be either W or τ0) and one parameter 
variable, will lead to inappropriate results.  
 

3.  Experimental  
 
       We will use the experimental results obtained for the 
parameters W, τ0 and Tm on biaxially drawn sheets of 
polyethylene terephthalate (PET) of 8 µm thickness to 
generate realistic data for the analysis and simulations.   
Disk specimens of 40 mm diameter were provided with 
two measuring electrodes of 25 mm diameter by 
evaporating silver at a pressure of 2 × 10-5 Torr. 
Measurements of FPTSDC, at a chamber pressure of                  
5 × 10-3 Torr, were made for different polarization 
temperatures.  The electrical current in the circuit was 
measured with an electrometer (Keithley 617) coupled to a 
PC for data acquisition and analysis. The fractional 
polarization peaks were recorded with the following 
polarization conditions. Isothermal polarization time                  
tp = 5 min at selected temperatures Tp, followed by cooling 
to (Tp – 5) K in 2 min keeping the electric field on. At                
(Tp - 5)K the electric field was removed and the sample was kept for 



The distribution of the relaxation times and the thermally stimulated depolarization currents 
 

 

951

ts = 2 min in short circuit. Further the sample was cooled 
down (0.5 K/s) at approximately (Tp – 50) K in short 
circuit.  The temperature of measurements was varied over 
the range 60 to 320 K. A Cu-Constantan thermocouple, 
mounted in the sample holder and adjacent to the film, 
allowed the temperature measurement with a precision of 
0.1 K. The sample temperature was maintained constant to 
within ± 0.1 K.  The current measurements were taken at a 
heating rate b = 5 K/min. The linear heating rate was 
controlled by the computer and the difference between the 
prescribed and the measured temperature was always 
lower than 0.3 K.  Prior to every TSDC measurements the 
sample was heated to 463 K to anneal out any thermal and 
electrical pre-history. It was kept there for a sufficient long 
time to insure that the discharging current becomes 
insignificant. It was then slowly cooled down to room 
temperature. This way, the sample is conditioned so that 
prior history does not influence the coming measurements, 
therefore avoiding impairing the repeatability and 
interpretation of results [4,8]. The degree of crystallinity 
determined by X-ray diffraction was 68 % and was found 
to be practically unchanged by the conditioning procedure.  
 
 

4. Results and discussion 
 
       Fig. 1 displays the FP spectra for samples polarized at 
Tp = 120 K under a field Ep = 30 MV m-1. The full curve 
represents best fit lines to Eq. (1). The values of the fitting 
parameters are presented in the inset. In Table 1 are 
presented Tm and W for samples polarized at different 
temperatures from 80 to 180 K.  Using Eqs. (4) and (5) the 
values for τ0  and for  τ(Tm)  were determined.  
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Fig. 1.  Thermally stimulated discharge currents 
(fractional polarization) for PET samples polarized 
under  a  field  of  30  MV m-1  at  120  K.  The  full  curve  
       represents the best fit line obtained using Eq. (1).  

 
 
 
 
 

Table 1. The results obtained for W by a fast estimation 
using  the  initial  rise  method.  The  values  for  τ0  are 
obtained  from  Eq.  (4)   and  the  values  for  τ(Tm)  are  
                                obtained from Eq. (5). 

 
Tp 

K 
Tm 
K 

W 
eV 

τ0 
s 

τ(Tm) 
s 

80 96.4 0.07 0.05 145 

100 117.1 0.12 0.006 120 

125 144.0 0.12 0.007 163 

140 157.9 0.15 0.002 169 

160 176.5 0.15 0.009 210 

180 197.7 0.20 0.002 205 
 
 
       Equation (4) can be solved numerically to obtain a 
three-dimensional plot of τ0(W,Tm). For the parameters, we 
will use values very close to those determined from the 
experimental data and presented in Table 1. The results 
obtained for 0.1 eV < W < 0.6 eV, 150 K < T < 250 K and 
b = 1 K/min or 5 K/min are presented in Figs. 2 and 3, 
respectively. Figs. 2 and 3 imply that, for narrow intervals 
of the input parameters, there are approximately linear 
relationships between W, Tm and log τ0. It can be observed 
that W decreases as τ0 increases. Assuming that τ0 is 
constant, Eq. (4) implies a relationship between W and Tm. 
Conversely, assuming that τ0  is a function of W, Eq. (2) 
implies  either (i) a relationship between W and Tm or (ii) a 
relationship between τ0  and Tm.  
 
                                      

 
 

Fig. 2. Three-dimensional plot of the expected values for 
τ0(W,Tm) obtained by numerical solving of  Eq. (4)  for  a  
                            heating rate of 1 K/min. 
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Fig. 3. Three-dimensional plot of the expected values for 
τ0(W,Tm) obtained by numerical solving of Eq. (4) for a  
                         heating rate of 5 K/min. 

 
 

The variation of τ(W,Tm) for the same  parameter 
intervals as above is presented in Figs. 4 and 5. The 
relaxation time varies in a narrow interval suggesting a 
narrow distribution. The variation is smaller for a high 
heating rate. Consequently, a low heating rate is 
recommended in order to study a possible distribution. 

 

 
 
Fig. 4. Three-dimensional plot of the expected values for 
τ(W,Tm) obtained by numerical solving of Eq. (5) for a  
                            heating rate of 1 K/min. 
 

 
 
Fig. 5. Three-dimensional plot of the expected values for 
τ(W,Tm) obtained by numerical solving of Eq. (5) for a  
                          heating rate of 5 K/min. 

General relationships involving any two of the 
relaxation parameters and the ranges in which these 
parameters vary, may be obtained using Eq. (4) for a row i 
of elementary peaks. In this case Tm becomes a variable 
parameter Tmi, meaning that 

a) all elementary currents (characterised by different 
values of Wi, τ0i and Tmi for b  constant) that can contribute 
to a measured current are considered. This is especially the 
case when a peak is decomposed into a sum of elementary 
peaks; 

b)  we can consider all possible sets of parameters 
Wi, τ0i and Tmi  for a  constant b that  define an elementary 
peak, and assume that any of these parameters can be 
affected by some uncertainty. This is especially the case 
when we try to determine whether there is a distribution in 
the values of the relaxation parameters obtained from a 
peak, keeping in mind the uncertainties affecting the 
relaxation parameters. In fact, the uncertainties affecting 
the parameters determine a broadening of the theoretical 
peak. 

c) we can consider all parameters Wi, τ0i and Tmi 
obtained for a peak when b is a variable parameter. As can 
be observed from the simulations in Figs. 2 to 5 the values 
obtained for the relaxation parameters are dependent on 
the heating rate.   

From Eq. (4) results that for a given heating rate, for 
example 1 K/min, and for every elementary peak, e.g. the 
one in Fig. 1, there are several possible solutions for the 
pair Wi, τ0i. We will consider the peak at Tmi = 144 K and 
let us try to solve Eq. (4) to find some possible solutions 
for Wi and τ0i. We will assume that τ0i varies in a large 
range 10-6 to 10-16 s.  The results for Wi are presented in 
Table 2, column 2. From the data in Table 2 it can be 
observed that if we impose a value for one of the 
parameter the value obtained for the other parameter can 
be very different from its actual value. The value obtained 
for τ0i = 10-6 s is close to the one determined from 
experimental data.  
       An estimate of the possible uncertainties for relaxation 
parameters can be obtained using Eq. (4).  By taking the 
logarithm of Eq. (4), differentiating and replacing the 
infinitesimal variations d with the finite variations ∆, it 
results 
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Equation (8) can be used to obtain useful relationships 
between the relaxation parameters τ0i, Ti and Wi and the 
finite variations of these parameters ∆τ0i, ∆Tmi and ∆Wi, 
which in turn can be used as approximations for the 
uncertainty intervals of τ0i, Tmi and Wi.   
      The lack of periodicity in random solids, such as 
semicrystalline PET, implies that the constituent atoms, 
molecules, or molecular subunits are located in statistically 
different environments. We will assume that the thermal 
fluctuation gives rise to a Gauss-type distribution function 
for W. It is known that at any temperature there is a 
thermal energy kT. Consequently, we will assume that at 
any temperature T the uncertainty interval ∆W is at least 
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equal with ± kT. Because this interval represents the 
minimum uncertainty that influences any determination of 
W, we will call it the natural uncertainty interval in 
activation energy [20]. Equation (8) will be further 
discussed in three particular cases to follow. 
       In the first case we will assume that τ0i is constant 
(∆τ0i = 0). From Eq. (8) it results 
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Equation (9) gives the minimum range for ∆Tmi (because 
∆Wi has the minimum value) as a function of Tmi, Wi and 
implicitly of τ0i. Using the values in column 2 (Table 2) 
for Wi (determined for a particular case Tmi = 144 K) and 
Eq. (9), the values for ∆Tmi may be calculated. The 
calculated values are reported in Table 2, column 3. In 
Table 1 are reported the values calculated using the results 
determined from the experimental thermograms. The 
quantity ∆Tmi represents the temperature range in which an 
elementary peak can be located, i.e. the peak can be 
located in a certain temperature interval for different 
choices of the relaxation parameters. We can read this 
result in a reverse way: all the peaks having the 
temperature of the maximum current in an interval ≅ ∆Tmi 
will provide similar relaxation parameters. The immediate 
useful implication of this estimation is from an 
experimental point of view: if the window polarization 
technique is to be used to separate the elementary 
contribution, it is useless to chose the experimental 
conditions so that for two successive elementary peaks          
Tmj –Tmi  <  ∆Tmi. Similar conclusions are also valid for the 
case when a global peak is decomposed (by fitting) into a 
number of elementary components. At the same time from 
the data in Tables 1 and 2 it can be concluded that the 
elementary peaks obtained by windowing polarization 
need not be uniformly spaced in temperature. For the 
presented conditions, if the activation energy increases 
from 0.2  to 0.5 eV or the pre-exponential factor decreases 
from 10-6 to 10-16  s,  ∆Ti decreases from 6.6 to 3.47 K.  
For the situation when ∆Wi > kTmi, meaning that we have a 
variance (standard deviation) in activation energies, ∆Tmi 
increases which, in turn, results in the elementary peaks 
being less accurately resolved. 
       In the second case Wi is assumed constant but ∆Wi is 
equal to the thermal energy kTmi. In a worst-case estimate 
of error, that is, assuming that ∆Tmi = 1 K is the lower limit 
for ∆Tmi  (we can not expect to have a better separation of 
the elemental peaks) we have 
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Using the data in Tables 1 and 2, the values of ∆τ0i/τ0i  can 
be computed. The results are listed in Table 2, column 4. It 
can be observed that ∆τ0i/τ0i is very close to unity. Because 
in Eq. (10) we have used a good resolution for ∆Tmi (1 K) 
the interval ∆τ0i  ≅ τ0i represents the higher limit for the 
resolution of determining the pre-exponential factor. This 

resolution is higher than the one reported in literature 
∆α0/α0  = 5.8 [2], as expected. It can be concluded that by 
assuming Wi = constant, and under ∆Wi = kTmi, the width 
of the peak increases as compared to the width determined 
in the τ0i = constant case; a broad experimental peak 
indicates that there is, at minimum, a distribution in the 
activation energies.  
       The third case is Tmi = constant and applies to 
situations when there are relaxation entities having 
different values for Wi and τ0i but the current peak appears 
at the same temperature Tmi. In this case Eq. (8) becomes   
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To obtain the natural uncertainty interval for τ0i we 

will assume again that ∆Wi = kTmi. Using the values for Wi 
in Table 1, we can determine the values of ∆τ0i from Eq. 
(11). The results are reported in Table 2, column 5. It can 
be observed that the ratio ∆τ0i/τ0i is very close to unity. In 
fact, the values for ∆τ0i/τ0i in Table 2 do not differ 
significantly. 
 
 

Table 2.  The values obtained for the activation energy 
Wi by numerical solving of Eq. (4) for b = 5/60 K/s, Tm = 
144 K and different values for the pre-exponential factor 
τ0i in the range 10-16 to 10-6 s. There are reported also the 
natural uncertainty intervals ∆Tmi corresponding to the 
natural uncertainty interval for the activation energy and 
the ratio between the natural uncertainty interval ∆τ0i  
and  τ0i  in  the  case  when  there  is no distribution in τ0. 

 
τ0i 

 
s 

Wi 
Eq. 4 
eV 

  ∆Tmi  
Eq. 9  
K 

∆τ0i/τ0i  
Eq. 10 
  

∆τ0i/τ0i 
Eq. 11 
  

10-16 0.53 3.47 1.32 1.02 

10-14 0.44 3.9 1.29 1.02 

10-12 0.39 4.4 1.26 1.03 

10-10 0.34 5.1 1.24 1.04 

10-8 0.28 5.8 1.23 1.04 

10-6 0.21 6.6 1.21 1.05 

 
 

Further we will apply the above results for the 
experimental thermogram on PET displayed in Fig. 1. The 
uncertainty in W for the best fit line in Fig. 1 is 0.007 eV 
meaning that the fitting process is very good; but there is 
no physical reason to consider that ∆W < kTm (kTm = 0.014 
eV). The fact that the experimental data in Fig. 1 are very 
well fitted for a unique value of W does not necessarily 
mean that there exists no distribution in W. There could be 
a distribution in the activation energies and the important 
question is how wide this distribution is. In this respect it 
is useful to simulate thermograms for small parameter 
variations. Fig. 6 presents two simulated thermograms for 
W = 0.27 eV and for W = 0.31 eV (meaning that the 
variation of W is slightly higher than the thermal energy 
kTm = 0.014 eV), the other two parameters having the same 
values as above. Fig. 6 suggests that by choosing ∆W in 
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narrow limits, the peak shifts by about 10 K. This result is 
in good agreement with the estimations presented in Table 2.  
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Fig. 6. TSDC (circles), the best fit of the data and two 
simulated curves   assuming   W  as   variable  parameter  
                                  (α0 = constant). 

 
 
        In Fig. 7 we present two simulated thermograms 
(assuming α0 a variable parameter) and the experimental 
data from Fig. 1. It can be observed that the peak changes 
significantly for a small variation in α0. It is to be 
underlined that the variation in α0 is lower than the natural 
uncertainty interval ∆τ0 reported in Table 2.   
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Fig. 7. TSDC (circles), the best fit of the data  and  two 
simulated curves  assuming  α0   as  variable parameter  
                                  (W = constant). 

 
 

Fig. 8 captures the experimental data from Fig. 1, the 
best fit line using Eq. (6), and two simulated thermograms 
(assuming P0 constant).  It can be observed that, since W 
increases from 0.28 to 0.32 eV, the maximum current 
increases but does not shift due to the fact that Tm is kept a 
constant parameter. The results in Fig. 8 are in very good 
agreement with a resolving limit of W2/W1 = 1.09 reported 
in the literature [2]. There is a very good agreement 
between the values obtained for W using Eqs. (1) and (5) 

and qualitative agreement between the values obtained for 
τ0. As long as Tm is known it is advisable to use Eq. (6) for 
fittings, simulations or to decompose a global current into 
a sum of elementary peaks.  
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Fig. 8. TSDC (circles), the best fit curve to Eq. (5) 
(dashed line) and two simulated curves. W increases 
from  0.28  to 0.32  eV  and  the  value  calculated  for τ0,    
  using Eq. (4), decreases from 1.2 ×10-8 to 4.1 ×10-10 s. 

 
 
       From the data in Figs. 6 and 7, it can be concluded 
that very small variations in W or τ0 can be discriminated 
when only one parameter varies. In reality both parameters 
change and the data in Fig. 8 show that variations lower 
than the natural uncertainty intervals can not be properly 
identified. 
   
 
      5. Conclusions 
       

The values obtained for W or τ0 by fitting the 
experimental data to the analytical equation of the current 
vary significantly for the case when one parameter is 
assumed constant. An equation is proposed to compute the 
relaxation parameters taking advantage of the fact that W 
and τ0 change simultaneously. The relationship between 
W, τ0, b and Tm can be used to obtain information about 
the distribution of relaxation parameters and the 
temperature range corresponding to elementary peaks. As 
long as the experimental current can be fitted with an 
elementary peak and the uncertainties affecting the 
relaxation parameters are low, i.e. ∆W ≅ kTm and ∆τ0  ≅ τ0, 
the distribution functions cannot be determined accurately. 
The adjustable parameters are affected by uncertainties 
that progressively increase as the number of elementary 
currents, considered in a fitting step, increases.  
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