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Self-organized nanostructures obtained through capillarity effects are modeled and studied by Monte-Carlo type computer 
simulations. We focus on two practically important systems, recently studied by experimentalist groups. The first system is a 
polysterene nanosphere suspension drying on a silica substrate. The second one is formed in a system of drying vertically 
aligned nanotube-array. For modeling these experimentally obtained and fascinating nano-patterns, spring-block type 
models are used. Stochastic simulations performed on these models reproduce qualitatively the experimentally obtained 
structures and gives thus a promising description for the pattern formation dynamics.   
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1. Introduction 
 
Nowadays it is widely realized that nanostructures 

represents the future for modern areas of electrical 
engineering, drug industry, optics, mechanical engineering 
or medical engineering. The urgent need for making 
devices as small as possible in order to use less material, to 
obtain better storage, bigger densities or easier access to 
tight and narrow spaces, makes the nanostructures an ideal 
candidate. Thanks to the efforts of nano-chemists 
nowadays various nanoparticles nearly monodisperse in 
terms of size, shape, internal structure, and surface 
chemistry, can be produced through reliable and standard 
manufacturing processes. These nanoparticles which can 
be nanospheres, nano-tubes or colloids can be used as 
building blocks for engineering more complex structures. 
Due to the strong adhesion and cohesion forces the word at 
nanolevel is very “sticky” and human assisted construction 
of nanostructures is complicated. At this point the self-
assembled nanostructures become important. Self-
assembling can be realized through Van der Waals type 
forces between constituents, geometrical constraints, 
magnetic interactions, thermal diffusion and capillary 
forces. In the present study we will investigate this latter 
possibility focusing on two interesting systems.   

The first system in view is a polystyrene nanosphere 
suspension drying on a silica substrate - a system largely 
used in nano-sphere lithography [1-4]. The second system 
is a drying vertically aligned carbon nanotube array [5]. 
Both systems have been widely investigated by 
experimentalists, and presents major interest for 
generating self-assembled nanostructures. The nanosphere 
system can be useful for generating regular nano-dot 
patterns or nano-wires through nano-lithography, the 
nanotube system on the other hand can provide a 
technique to make shock-absorbers at nano-level or 

storage capabilities for biological cells. In the present 
paper we will show that the self-assembled patterns 
formed through capillarity effects in these systems can be 
successfully modeled by using Burridge-Knopoff type 
spring-block models [6, 7]. These models are appropriate 
for reproducing the wide variety of the experimentally 
obtained structures and to understand the influence of the 
experimentally controllable parameters.      

 
 
2. Theoretical model 
 
2.1 Modeling structures obtained in a drying  
       suspension of polysterene nano-spheres  
  
The use of two-dimensional (2D) self-assembled array 

of nanometer-sized polystyrene spheres as deposition 
mask is known as NanoSphere Lithography (NSL) [1-4]. 
NSL is now recognized as a powerful fabrication 
technique to inexpensively produce nanoparticle arrays 
with controlled shape, size and inter-particle spacing. The 
experimental method for getting nanosphere-structures 
appropriate for deposition (named the drop-coat method) 
is very simple. A monodisperse polystyrene nanosphere 
suspension is dried on a previously prepared silica 
substrate [1, 8]. During the drying process the capillarity 
and Lenard-Jones type forces, together with the pinning 
forces acting on the surface will self-organize the nanos-
spheres. Apart of the ideal compact triangular lattice 
structure which is desirable for practical purposes many 
other structures can be formed. The final patterns usually 
present many dislocations, voids or clusters that can be 
again useful for nano-engineering purposes (see for 
example Fig. 2). The obtained structures can be influenced 
by changing the density of the nanospheres on the 
substrate, the used fluid, evaporation rate or substrate. 
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Here our goal is to understand and investigate the pattern-
formation dynamics in this system by considering a 
Burridge-Knopoff type model.  

The model is rather similar with the spring-block 
stick-slip model successfully used for describing 
fragmentation structures obtained in drying granular 
materials in contact with a frictional substrate [9, 10]. The 
new feature of the present model is that a predefined 
lattice is not considered anymore. The model is two-
dimensional; its main elements are blocks which can move 
on a frictional substrate and springs connecting these 
blocks (Fig. 1d). Disks, all with the same radius R, model 
the nanospheres, while the elastic springs reproduce the 
capillarity effects of water between them. (It worth 
mentioning that the coupling between the nanospheres will 
behave as springs, i.e. the force will increase with the 
spacing only in the case of a continuous film of liquid 
between them.) In our model all springs have similar 
spring constants k, and their length is defined as the 
distance between the perimeters of connected disks. There 
is also a Lenard-Jones type interaction-force Fj, between 
each pair of disk. This is characterized by a strong, almost 
hard-core type repulsion which forbids disks to 
interpenetrate each other and by a weak attractive type 
force, accounting for the electric Van der Waals type 
interaction between nanospheres (Fig. 1b). The friction 
(pinning) between disks and surface equilibrates a net 
force less than Ff (Fig. 1a).  Whenever the total force 
acting on a disk exceeds Ff, the disk slips with an over-
damped motion. The tension in each spring is proportional 
with the length of the spring (Fk = k·l), and has a breaking 
threshold Fb (Fig. 1a).  

Initially disks are randomly distributed and connected 
by a network of springs (Fig. 1e). We put springs between 
those spheres, for which the centers can be connected 
without intersecting another sphere (this condition will be 
referred later as the geometric condition). An initially pre-
stressed spring-block network is thus constructed. During 
each simulation step the spring constant is fixed and the 
system relaxes to an equilibrium configuration where the 
tension in each existing spring is lower than the breaking 
threshold Fb, and the total net force acting on each disk is 
lower in magnitude than the slipping threshold Ff. This 
relaxation is realized through several relaxation steps: 

(1) For all springs the tension ij
kF
r

 is compared with 

Fb. If b
ij

k FF >
r

, the spring is broken and taken away 

from the system.  

(2) The total forces )(∑ +=
p
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j
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kipt
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rrr

 

acting on disks are calculated (the sum is over all the other 
disks p, dip is 1 if the disks are connected by a spring and 0 
otherwise, the subscripts k and j denotes elastic forces 
from springs and Van der Waals type forces between 
disks, respectively) . 

(3) Each disk is analyzed. If the magnitude of the total 

force i
tF
r

 acting on a disk is bigger than Ff, then the disk 

will slip with an over-damped motion governed by 
viscosity η, and its position will be changed by: 

η/dtFrd i
t

i
rr

= . The repulsive part of the Lenard-Jones 
potential forbids the spheres to slide on each other and the 
presence of viscosity eliminates unrealistic oscillations.     

(4) During the motion of a disk it can happen that 
another spring is intersected. This intersected spring will 
brake and it will be taken away from the system.  

(5) After all disks have been visited in a random order 
and their possible motions done, the springs that fulfill the 
considered geometrical condition and for which the 
tension is lower than the breaking threshold are redone. By 
this effect the rearrangement of water between 
nanospheres is modeled.  

This concludes one relaxation step. The relaxation is 
continued until a relaxation step is finished without having 
any spring breaking or disk slipping event. After the 
relaxation is done, we proceed to the next simulation step 
and increase all spring constants by an amount dk. This 
step models the phenomenon that the water lever of the 
continuous film decreases due to evaporation and the 
meniscus accounting for the capillarity forces gets more 
accentuated. The system is relaxed for the new spring-
constant value, and the spring constant is increased again, 
until all springs are broken or a stable limiting 
configuration is reached.  

 
 

 
 
 

Fig. 1. Basic elements of the spring-block stick-slip model. 
 
 

The above sequence of events can be easily 
implemented on computer and relatively big systems with 
over 10000 of disks can be simulated in reasonable 
computational time. The model, as described above, has 
several parameters: the value of the static friction Ff, the 
value of the breaking threshold Fb of springs, the initial 
value of spring constants kini, the spring constant 
increasing step dk, the value of viscosity η, the parameters 
of the Lenard-Jones potential, the radius of disks R, and 
the initial density of nanospheres )/( 2RNS πρ =  
(where S is the simulation area). Varying these parameters 
several final stable structures can be generated, and almost 
all experimentally obtained ones can be successfully 
modeled.  
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As an illustration for this on Fig. 2 we present some 
experimentally obtained structures in comparison with the 
ones generated by our model. The similarity between the 
experimental and modeled structures is a hint that our 
model works fine, and can be used for predicting the effect 
of the relevant parameters on the final structure. We also 
believe that the dynamics of pattern formation offered by 
the time-evolution of our model describes well the reality. 
On Figs. 3 and 4 we illustrate the time evolution of the 
system for different nano-sphere densities.  

 
 
2.2 Modeling capillarity-driven self-organization in  
      a two-dimensional carbon nanotube array 
  
Carbon nanotubes are considered again potentially 

useful building-blocks for engineering nanostructures. 

Recently, a clever method based on capillarity forces was 
proposed for obtaining self-organized structures from an 
array of vertically aligned nanotubes [5]. As described in 
[5], the method is relatively simple: A multiwall nanotube 
arrays is grown by chemical vapor deposition based on the 
decomposition of ferrocene and xylene. The vertically 
aligned nanotube array is oxidized in an oxygen plasma at 
room temperature and 133 Pa pressure for 10 minutes and 
immersed in a wetting fluid (water for example). After the 
water is evaporated characteristic cellular type patterns are 
formed, i.e the end of the nano-tubes self-organize in 
compact walls. Some characteristic patterns obtained with 
different fluids or nanotube lengths are visible on Fig. 5.   

 

 
 

Fig. 2. Visual comparison of simulation and experiment. 
 
 

 
 

Fig. 3. Time evolution of a low density nanosphere 
system.(Ff=0.01, Fb=0.3, ρ=0.512). 

 
 

 
 

Fig. 4.  Advancing fracture lines in a high density 
system.(Ff=0.01, Fb=0.05, ρ=0.749). 

 
Similarly with the case of the previous problem, our 

goal is to elaborate a simple mechanical model that allows 
us to understand the pattern formation dynamics and to 
investigate the influence of the relevant parameters on the 
final structure. The model elaborated for this capillarity 
driven process is similar with the one elaborated for the 
nanosphere case. The problem can be mapped in a two-
dimensional spring-block model (Fig. 6). 
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Fig. 5. Experimentally obtained structures after the 
evaporation  of  water  in  a system  of  vertically  aligned  
                                 nanotubes. 
 

 
 
Fig. 6. Main elements of the  two-dimensional spring- 
block model for the capillarity driven nanotube array. 

 
 

There are two types of springs is the system. One type 
of springs (type 1) is modeling the bending elasticity of the 
nanotubes, and springs of type 2 is modeling the capillarity 
forces between the nanotubes. The bottom (basis) of the 
nanotubes is arranged on a predefined lattice and these are 
fixed centers where one end of the elastic springs of type 1 
is anchored. The top of nanotubes are modeled by the 
blocks of the two-dimensional spring-block model. Each 
block is thus connected with an unbreakable spring of type 
1 with the initially fixed position of the bottom. The 
blocks (top of nanotubes) are also connected with their 
nearest neighbors through springs of type 2. Similarly with 
the previous model the springs of type 2, have a breaking 
threshold Fb (if the tension is bigger than Fb  the springs 
will break and are irreversibly taken out from the system). 
The blocks can slide now without friction on the surface. 
They are in equilibrium when there is no resultant force 
acting on them from springs of type 1 and type 2. There is 

also a viscosity tempering the free slide of the blocks and 
stabilizing unrealistic oscillations. The main difference 
relative to the model used for the nanosphere problem is 
that in this case there are no pinning forces between the 
substrate and nanotubes. Instead of this the stabilizing 
force is an extra elastic force that connects the top of the 
nanotubes to the projection of their bottom on the 
simulation plane. The dynamics of the system leading to 
pattern formation is than simple: 

1. Blocks are placed on o lattice and the 
interconnecting spring-network is constructed. The spring 
constants for springs of type 1 and 2 are assigned. Spring 
constants for spring of type 1 are taken small, so that the 
tension in each spring is smaller than Fb. 

2. A small number of links (springs of type 1) are 
removed, creating an initial randomness in the system. 

3. The dynamics of blocks towards equilibrium is 
realized through an over-damped molecular dynamics 
simulation (parallel update) with a fixed time-step. 

4. Whenever the tension in a spring of type 2 is 
greater than Fb  the spring is irreversibly removed.     

5. After all blocks reach equilibrium (the largest 
displacement per unit time is smaller than a fixed very 
small value) the spring constants for springs of type 2 are 
increased by a small dk amount. This process models the 
evaporation of liquid, and the fact that the meniscus in the 
water layer is getting stronger.  

6. The dynamics is repeated from step nr. 3 and 
continued until a final, stable configuration of the blocks is 
reached.  

Again, the model as described above can be easily 
implemented on the computer, and in a reasonable 
computational time many experimentally observed 
patterns can be qualitatively reproduced. Simulation 
results for different parameters of the model are plotted on 
Fig. 7. 

Computer simulation suggests thus, that the model 
captures again the main ingredients necessary to 
understand pattern formation in the considered drying 
system. While much more work has to be done for 
clarifying the influence of the relevant parameters of the 
model or to investigate the obtained structures in a 
quantitative manner, the first results are promising. The 
preliminary simulations gave also a valuable image on the 
pattern formation dynamics. A characteristic time-
sequence for this dynamics is plotted on Fig. 8. 
 

 
 

Fig. 7. Various structures simulated with the spring-
block model defined in Fig. 5. 
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Fig. 8. Time evolution of the nanotube model. 
 

As observable from the time-sequence in Fig. 8, the 
cellular pattern is formed after a void is nucleating in the 
breakable spring-network. This preliminary void is 
enlarged by the tensioned resort-network until the top of 
the nanotubes (blocks) will arrange in a final and stable 
cellular structure. The picture suggested by the simulation 
seems realistic, and it is in a complete agreement with the 
in-situ observations presented in [5]. 

 
 
3. Conclusions  
 
Mechanical spring-block models with relaxational 

dynamics were used for modeling nano-pattern formation 
due to capillarity effects. Two practically important 
problems have been investigated. In the first problem the 
building-blocks were nanospheres while in the second one 
the building blocks were nano-tubes. In both cases a 
simple spring-block model could reproduce qualitatively 
well the self-assembled nanostructures and the dynamics 
leading to pattern formation. As a continuation thus of our 
previous studies concerning the applicability of the simple 
spring-block type models in materials science [9,10], we 
have proven again that such simple approaches could yield 
valuable and practically important results. The introduced 

models are appropriate for large-scale computer 
simulations and for investigating the influence of different 
experimentally controllable parameters. There is a 
possibility for predicting thus the effect of some key 
parameters on the final pattern or for designing a wide 
variety of self-assembled nanostructures on computer.   
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