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The inverse problem in scattering theory of optical fields
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A general model was built for spatial solitons in photorefractive crystals using the inverse problem in the scattering theory.
The inverse problem in the scattering theory is defined knowing the spectral data that characterize the scattering. We
present a formalism regarding the use of the inverse method in solving the nonlinear differential equations. Envelope
singular analytical solutions (solitons) and asymptotically solutions of the wave equation for integral equation (of SBS type)
were obtained. The results are in good agreement with the results obtained in other papers.
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1. Introduction

In this paper we build up a model for spatial solitons
in photorefractive crystals process using the inverse
problem in scattering theory.

In 1953, [1] N. Levinson established some important
relations between phase variations (first species
discontinuities) of the asymptotically solutions and
scattering potentials. R. Tost and R. Newton [2] built
potential functions using S matrix associated to a
differential equations system. V. A. Marcenko performed
calculation of the potential energy depending on phase
scattering waves [3]. Thus, it appears the inverse problem
in scattering theory with V. A. Marcenko and Z. S.
Agranovichy [4]. T. Regge [5] introduces notion of
complex orbital moment. J. J. Loeffel [6] studies the
connection between the inverse problem and scattering
potential. In [7] R. Newton builds up a potential function
using phase variations at constant energy. The same author
[8] makes the connection between complex angular
moment and the inverse problem at constant energy. P.
Redmond [9] makes a few interesting remarks regarding
the role of scattering matrix about inverse problem. P.
Sabatier [10] creates a general algorithm for the inverse
problem at constant energy. The same author [11]
approaches an approximate inverse problem using
interpolation formula with applications in determination of
spin-orbit potentials.

B. M. Levitan and I. Sargya [12] and P. Sabatier [13]
studied the role the spectral theory in the inverse problem.
P. Sabatier [14] studied the asymptotical properties of the
potentials in inverse problem, and B. M. Levitan [15]
studied the inverse problem in scattering quantum theory
at constant energy.

Years’70 are characterized by the effort made for
solving of nonlinear differential equations using the
inverse problem and for singular envelope solutions
(solitons) description.

V. E. Zakharov and A. B. Shabat [16,17] develop
methods for solving nonlinear wave equations using the

inverse method in the scattering theory. The two authors
together with J. Satsuma and N. Yajima [18] and C. S.
Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura
[19,20,21] improved the application of the inverse method
in solving nonlinear equations getting singular envelope
solutions (solitons). M. J. Ahlowitz and H. Segur [22, 23]
studied the effect of losses on optical solitons width as
well as transversal and longitudinal stability of the optical
tridimensional solitons.

A formalism of the inverse method in solving
nonlinear differential equations (of SBS type) and for the
interpretation optical spatial solitons in photorefractive
crystals will be presented in this paper.

2. Mathematical

It is considered tools the wave equation in the form
[24]:

AD + KD -V (r)d =0. (1

Choosing V (I’) with spherical symmetry we use the
development:

o(r)=20y1(0,). @)

\/F m

The equation for radial component yields [24]:

dz{/’ 1 do > 2
+— -2 4+k’p—-Sp-V(r)o(r)=0 @3
oty g e me-V()er)=0
Where/’t=|-i-1/2||:0123 1357
1230iA0 2 2

The function @ = (D(I’) - go(l’ |k, /1) is a regular
solution in I = 0. We impose for V (I’) the conditions:
1
J' rV (r)dr < co (finite value) )

0

I[\/ (r}dr < oo (finite value) (5)
1
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If the conditions considered (4) and (5) out it results:

limg(r |k, 2)= /ﬂz.rA(k,ﬁ)sin{kr—Z[ﬂ,—;)+5(k,ﬂ)}

(6)
In the asymptotical expression of gD(I’) defined in (6)
we use notations for:
A(k, /1) —> the wave scattering amplitude

o (k, ﬂ,) —> the wave scattering phase.
With these data, one defines the inverse problem in
scattering theory: V(r) will be determined knowing the

spectral data which characterize the scattering ( A(k, ﬂ),
5(k,A).

It will be analyzed later the case in which k=1. So, the
spectral data take the form:

A(l, /1) = A(//L)|A:I+%;I:O,l,2,...

5(15 /1) = 5(11,1:|+%;|:0,1,2,m

The wave equation (3) can be written in integral form
(as proposed by Regge [5]):

o(r.2)=1,(r)+

O

S e =

d
k(r, p)- U(p)f ®)

| l(r) —> are the first species Bessel functions modified

of (A) order.
Using Regge integral solution (8) and wave equation
(3), we build up the operators:

[xnzr{d2+i.;ﬁ4_v@ﬂ

dr?
2
[So(p):pz[dd2+1'cj(j+l:|
p* p dp )
A d> 1 d
Ar)=r—+~-—
o(r) {dr2+r dr}

X d> 1 d 24
Bl=r2[+-+1—r2}84-li(f)=0

The wave equation as an equation with eigenvalues is
written on the form:

D(r)o(r, 2) = Zol(r, 2) (10)
The relations between operators are:

B,(r)+ 2 =D,(r)

3(r)=D,(r)-r*-V(r) (11)

In the following will be presented the method of R.
Newton of solving the inverse problem. We attach to the
integral equation (8) and to the operators system (9) the
equation with eigenvalues on the form [25]:

D(r)-K(r, p) = B, (p)-K(r, p)

2d

(12)
V(r)=2=—K
(r)= =4 K(rr)

The method of R. Newton consists in solving the
equation with eigenvalues:

Ijo(r)’ F(r,p)zﬁo(p)l:(r,p) 13)
where F(O,p) = F(r,O) =0.
We decompose F (r, ,0) under the form:
F(r,P)ZZC | 1(r)'| 1(:0) (14)
=0 |+5 I+E I+E

and thus we obtain an integral equation similar to that in
(8), but for the integral nucleus K(I’, p) :
¢ dz

K(r.p)= (1, )+ [ K(5,2) F(z.0)- 2 = BOK(r. p)= By(p)K(r. )

ol0.2)=1,0)+ [K(E.0)1,0)- 22 = D(0hlr) - 200
(15)

By introducing the development (14) in integral
equations (15), we obtain the integral nucleus expression

K(r, p) on the form [26]:

K(r, p)= chl : Il+l(p)-¢)(r,| +1/2).(16)
1=0 2 2

The potential function V(I’) of (12) takes the form
[26,27]:

V(r)=E§C l{q{r,l +ljd|'“7/2(r)+| l(r)d(P(r’lH/z)l

ri=o I+ 2 dr 1+ dr

17

where:
¢(r,|+1jzl 1(r)+iC 1~(p(r,l’+l)~L”,(r) (17)

2 I+E = I’+5 2

where:

Le(0)=[1 1(p)1 1(p)-=2.  a®)
0 2

The algebraic equations system (17°) is solved in
comparison with unknown C > Wwhich later are
I'+—
2
introduced in (17) for the determination of the potential

function V (r) )
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One calculates the dependence of the coefficients

C 1
I'+—
2

S(1,1+1/2))

as a function of spectral data (phase_variation:

nr
The algebraic system (17) is multiplied by 1/7 and

one gets the system:

(oot 20,055, 5 e

19)
The equation system (18) cross to the limit I — o0
thus results:

lim\/g-(p(r,l +lj:A(l,l+lj-sin r—d+§(1,l+lj
oo | 2 2 2 2 2

(20)
Under the circumstances, the system becomes:

A(1,|+ij-sin r—ﬂ+5(1,|+ij —lim,| 1 (r)+

2 2 2 r—o 2 I+5 .

+ic 1 A(ll' jsm r—ﬂm[ll' 1] limL,(r)
=0 |'+E 2 2 2 r—w

2D

We use asymptotic solutions for Bessel functions:

. 2 . bl
liml | =,/—-sin| r——
r—ow I’+E 7t 2
. 2 '
liml | =.,[—-cos|r——| . (22)
r—ow I'—E ar 2

. 2 '
liml ; =—,/—-cos| r——
r—eo |'+5 ar 2

Thus, results:
I -1
sm{ d )}

2

Z Trrsi-1)
Introducing these relations in algebraic equation

system (20) we obtain an algebraic unknown equation

system {CI, ) } [28-30]:
2

1im L (r)=

A[l,l %j - efm(m%] +

;1
¢ u,E'A[l’I i) iZ(- |)+|{ (1| +1j 5(1,”3)}
2% 27sm{ (I- I)} 2 2 2
zr=0 (+1'+1)1-1)
(23)
We observe that the asymptotic equation system (23)
is no longer dependent on I, it only enssures the

coefficients dependence C | function of spectral data
I'+—
2

{A(IJ + %j;é‘(lJ + %)} therefore implicit and the

structural dependence of the V(I’) potential function of

spectral data.
We perform the spectral analysis of the following
operators [31,32]:

A,(r)=r %[r %} — (nondisturbed operator)

D,(r)=r %[r %} +r? - (nondisturbed operator)

D(r)=r- d [r i} +r> —r’V(r) - (disturbed operator)

dr dr
(24)
We use Fourier transforms in the form:
+00
F(r)= J' f(x)e "™dx
- (25)

1 o +i7X .
f(X): g:[OF(T)e dT

One makes the substitution €° =T and then the

Fourier transforms takes the form:

= [at0 &

1+<x>

g(r)= E
7€(—00,+0)

The spectra associated to the operators (24) (i.e. the
solutions) has the form:
A

Ao - Ao(r)qoo(r) = /12¢0(r); Py = m;
D, = D, (r)1,(r)= 221,(r): @7)
D — D(r)p(r)= 2o(r).

where |, (I’) are I species and I order — modified Bessel

re[0,0) (26)

F(z)r'dr

functions.
We use the crossing operators
{X £g.Dy? X Ag.D? X D,.D } defined as:
r dp
XAOan =1+ J AAU,D0 (ra p) -
0 P
dp
XAO —1+J. Drp)7 . (28)

R d
X oo0 =1+JADU,D(rap)‘_p
0
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The application method of the crossing operators [33-

r d
AD* @ ( §00 r, /1 +J.A Dy I’ ,0 (/70(/37/1)1010
0

o) 00, 2) %
)

29)

=op(r,A)- j

A

.
)=
7(r2) 24 T(1+4) 0

Using the representation (28) and (29), we build up
the fundamental integral equation for solving the inverse
problem (the integral Ghelfand-Levitan-Marcenko
equation; GLM).

We use the integral equation'

dz
p(r,2)=g,(r,2)+ J' (r,2)-o,(z, /‘t) . (31)

Given the case of discret spectrum 2 >0 : leR;
ﬂ' - in |nEN
We multiply the integral equation of crossing operator
with @, (,0, ﬂ“n ) :
PP, 2n)- 0(r 1) = 0o (P, 2n ) 0o (r 20 ) +

i dz
#1As0(12)- @ulpha)- 00(2.20) (32)

We divide the relation (32) by aﬁ and we count after

N from 1 to infinite.

n=l1 n

(33)

Given the case of negative spectrum (continuum
spectrum): A° <0 —> A ==ir;
A=+it.

We start as in the case of discrete spectrum with the
crossing integral equation written in the form:

7€ R. In this case

.
. . N4
o(r,it)=p,(r,it)+ j A p(r.2) 0,z |r)7 . (34)
0

We multiply (34) with the integral (equivalent Fourier
transform) Tl(p(p i7) r-dz Th: ti

ransform): — ,—17)-—————|. The equation

22 0 sh(zr)

(34) becomes:

e . yr-dr 1 : ; r-dr
2 [olemiolting s =3 [alednalin- o5
7-dr | dz
[olear L fLotorioy o uin 505 ] &
(35)

We use several integral representations of the form:

1 T —ir T
Ejp r“de=r-8(r-p)

iM(ah)-wo(p,—m;;j;f ()
;‘”H(pi —J{ riz) ;q)(r Iz’)} (p,—ir)sz(i;= (r-p)
(36)
where: aﬁ =||¢(I’,ﬂvn mz;
Thus, for p < T and A = +i7 it results:
1 : .\ r-dr
A Lrp)=— ,—I17)-(r,1 . 37
wo(r.p) 27L¢°(p Delni)g s 6D
And for A =—I7 itresults:
. - N
p(r—it)=g,(r—iz)+ I A, p(r.z)- p,(z,-i 1)7- (38)
0

Using the same algorithm for the continuum spectrum
as for the discrete one, the integral equation is written in
the form:

i dz
AAD(rp+FADr:D+J‘AA“D ADZp) =0 (9
0

where:
© 1
Fa,o(rp)= X5 0p(p. 1) 0(r. 0y ) -
n:lan
_l*“’u(—l ) ‘ B t-dt » (40)
2—{0 H(+| )(Po(Pa ) (PO(rv It Sh(TC‘C)

the first term representing the contribution of discrete
spectrum, and the second term the contribution of the
continuum spectrum.

p(=ir)

pl+iz)

In the expression (40), af and contain the

spectral data induced by V () .
Calculation example: we choose
(rj%
2
o\l A, )= ———:
o(r.4,) r(i+4,)

The function FAOD (I’, p) becomes fAOD (I’ . p)
(function of product I' - p ) and yields:

(r-p) :i (Lr] _1T#(—'ir)_(4r]_ir_ dr .

Sal-r(1+4,) 27
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The function fAUD (r . p) is named also the function

Regge-Loeffel [6]. The integral equation (GLM) has the
form:

f dz
AAOD(r’p) A,D r P +IA )
0

(Zp =0

(42)

We choose a crossing operator X a,D, With' the form:

Xap 2o A)=1,0r) . @
The associated integral equation has the form:
dz

I () (oor/l J. Dorz) (/)0(2/1)7. (44)

We build up the spectrum of the operator Ao , based

on the eigenvalues equation:

Ao(r)goo(raﬂ') = /Izqoo(ra/i);
r
A)=——7—.
AL T

The operator Ao (I’) has not discrete spectrum,
(40)

Therefore, the continuum spectrum of the operator

A

A, takes the form:

Loy vy 7ed
r.5(r—5)=+5-[j”o(""f)'%(p’”)srh(ﬁz).

(47)
We calculate the spectrum of the operator D, (r); the

eigen values equation is:

D, (re(r, 2)= Zo(r, 2). (48)
where Q)(r,ﬂ,) = Il(r).
The spectral equation attached to operator f)o (I’) has

the form:
r-or p)fnz::, MH'%HZ 2:[0[|i,(r) u(+ir) I"’(r)} I’”(p)sh(ﬂr)
(49)

The discrete spectrum norm has the form:

=

2 Def %

). aro b
[1:(n) YR

0

For the spectral quantities calculation ,u(i ir ) , will

take into account that the Bessel functions | l(l’) accept

asymptotic solutions on the form:

|ﬂ(lr):\/%sm[r+%(ﬂ_%H -
dué_r(r):\/%cos{r%(ﬂ‘%ﬂ

We identify solutions (50) with general asymptotic
solutions which include spectral data A(ﬂ), o (/1)

described in (5) and (6) and which can be written in the
form:

4”“):\/%‘A‘”'““[”é(r)-%[ﬂ‘éﬂ
qo’(r,/l):\/%. A(l)'cos[fw(r)_%(ﬂ_%ﬂ'

As a result of identification we obtained:

AA)=1
5(1)=0

ulit)= sin[x0 + % i rj
u(-ir)= sin(x0 - % irj ' &)

A, =2n
fim 2010 )
Xo—>0 /J(+ IT)

So, the symbolic representation of the spectrum of
D, (r) takes the form:

r-8(r —P):é‘m' La(p)- 1oa(r)+

3 I Ll L S

The integral equation of scattering from (38) can be
written in the new conditions:

(54

dz
AAODO (I’, Z)' FAODO (Z, p)*

(55)
or otherwise written (in terms of the crossing operator

- AAODO (I’, /3) = FAODO (r, /0) +

Sy S——

X D, ) in the form:
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dz

- A, (r’ P) = XA"DU “Fap, = Farp, (r’ P)+

S ——

(56)
Thus, the integral equation of scattering can be written
as:

— Ao, (o) =X, 0, (r) Fyp - (57)

From the relation (57) we write the inverse relation:

7 -1
Fop, =X, - Aup, (1. 0)- (58)
But from the wave equation it results:
Ao(r)' AAUDO = Ao(r)' AAUDO . (59)
The solution of equation (59) is just the

transformation nucleus, AAOD0 , that has the form:

A, (1 p) = —iﬁk)- lk(r)-[ﬁjk (©0)

Also, it results
Fyp, (F-p)=—-i \/7 I ( \/7)) (the Regge-Loeffel function).
(61)

In conclusion, we mention that in the integral equation
of scattering:

)dz
z
(62)
the known function (the input quantlty) f ADy (I’ p)

r
A, (r.p)+ fu0(r-p +IA wo, (2) fup5 (20 0
0

contains spectral data of the nonlinear operator; thus:

(Lrj (/)rj’”
& 1+ -d
ADn I’ p Z EJ' o r-ar

r(1+4,) *(1-iz) sh(zr)
and the solution of integral equation (GLM) is the integral

(63)

nucleus function AAoDu )

Finally will be represented a spectral development:

Given the operator I5(r) and the wave equation
(equation with eigen values): If)(r)go(r, ﬂ,) = /12¢)(r, ﬂ);
the discrete spectrum is represented by the eigenvalues:
>0 (ﬂn); the continuous spectrum: 2 <0;
A=+ir;
operator I5(r) is

r8(r—p)= %M(P(r;kn)_i_

the symbolic form of the spectrum of the

5 ol -
+ L7 ofr i) n-ir) r—it i)t .
> {cp( ,it) e ir)sv( )}(P(p, ) )

Ao, (r’ Z)' Fao (Z, ,0)7

The spectral data (Fourier transform after 0 ) have
the form:

Def % d
lo(r. 2, ) = [0*(r.2,) " =

r 7

ow-(%)

dr

A () -[”— 5'(4, )}

2

(65)

ulit)= puliz;x,) = A(—iz')~sin|:xo +5(—ir)+;ziz'}
(66)
where A(1) and S(1) are the spectral data from the

asymptotic solutions of the wave equation.
These asymptotic solutions have the form:

o)z A2) e o)
\/% p'(r, 2)= A(2)- Cos{r +3(2)- %(/1 B %ﬂ
o= (Z—f)%

3. The qualitative analysis of the nonlinear
equations using integral relations for
solitons in photorefractive nonlinear
crystals

(67)

The constitutive equations concerning the optical
envelope dynamic (@, , @ ) have the form [31,32]:

0D, 0D, ,
Hoon g TN, =0
0D, O'D, , (68)
2| 877' +W+ NL(?],p)q)yl ZO

where (¢ represent an asymmetry coefficient, and the

nonlinear component is defined by:

, 1
NL(77', p) =

. (69)

1+—y (2)- ]2 +@2 ]

Io
where I'=—

B
intensity and background intensity, and

is the ratio between the maximum
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where & represent an linear loss coefficient, and @, - K

nonlinear spatial frequency.
Given the Fourier transform operators defined in the
form:

Ié = Te’z”ik”dp
- . (71)
= _ J‘e+27zikpdk

and given the Fourier transforms:

®, (.k)= ffDXI n',p) e dp

@, (7'.k)= ICDyl (', p)-e*™dp

(72)
and given the inverse Fourier transforms:

+0
®, (7, p)= [®, (n.k)-e**dk
o _ (73)
®, (7, p)= [®, (7'k)-e”"dk
Finishing the preliminaries, we pass to the effective
calculation stages:

We perform the Fourier transforms of the (68) and we
obtain:

5% (' K B o
21 j‘a(ﬂ, k), (— 27k} ®, (7',k)+ 4 [NL(7', p)- @, (7', p)-€**dp = 0
n ’,
od, (', k ,
2i%+(—2mk) (7' k) + jNL;; p)- @, (', p)-e"™dp=0
n

—o

(74)

we process the convolution integrals from (74) and we
obtain:

®, (', k ~ . ~
2i % 47r2k2d)x‘(77’,k)+/.zj.NL(r7',k—k’)-@x‘(q’,k’)dk’=0
n b
D (7', k
0 y,(77' ) 47°K? (1) INL?] k—k')-® (f]’,k')dk’=0
on it
(75)

Thus, from the point of view of the inverse problem,
o, (?7', k) and @ (7]', k) represent the spectral data of

the problem. The equations (74) integrated upon 7’

represent the time and space evolution of the spectral data
associated to the inverse problem. As a result of the

integration upon 7 we obtain the equations [33-36]:

\ =

o e e

77 K — k) (Un,ky)euifk?q"dk}

sor
for

g%; g%:

E)y‘ (nr’ k) _ efzi”%;k {

77 K — k) (ﬂn’k/)e+2i712kzq"dkr}

(76)
where the initial (spectral) conditions C, (k), C, (k)
have the form:

N‘.—

= [, (0,p)-e7™dp

= TCDyI (0.p)

where @ (0, p) and O (0, p) are the initial data of

the problem.

One operates the inverse transform of the field
envelopes (76) and one gets (integral solutions in the
form) [37,38]:

. (77
. e—Znikpdp

@, (7.0 e
D, (7, p)=D, (7', p ‘*Jd" I 202 )+ 0 G )| N2 = ’i)dp
(p-p'
) ’ ' e CD( ) ezl( ")
q)y‘(”’p)=®y“’(’]’p)7%7[d” J;1+2 7|02 (ﬂnﬂi‘l‘ (", p") ]‘/2””7 77)
a7)
where:
=P
(1.0)= [ S, 0.0
@, (7.p @, (0, p')dp’
1o 2 '
n . (78)
(p-p}
+00 2|7]
q)ylo (77!, p) J. \/_ yl (O’p')dpr

The initial conditions are contained (are supplied) in
the equations (78). Thus:
@, (0.0

im®, (7', p')=lim®, (7',p')=
n'—0 ! n'—0 1o . (79)
lim®, (7, p)=lim®, (7,p) =@, (0,p')

We define the function:
Def 1

NL(7", p') =
1+ % @2 (7, p)+ 2 (", )]

Exemple of calculation:
We assume that the pump is accomplished by a
Gaussian beam, so that we will have:

1 -

200 =

X

(80)

2o (81)

1
@, (0,p)=——-
, (0.0) s
o y=Re(ax’y)+i-Im(ax,y), and O,

belong to the complex numbers class (o, |, € C).

where:
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We will have:

(p-p} p"

+00 2in' oy,

1 e
() = do'.
X195Y10 lﬂ_o_x’y J;O \/271177! o

In these conditions, after integrating (81) we obtain:

(82)

o

ol+2in

e

CDXIO (77':,0)= TS oo
1/7Z'i(7X +2|77'i

. : (83)
P

o-§+2ir7'

e

©, (7.p)= NEETET)
z\oy +21n

We use the case of the circular symmetry
(0,=0,=0_ =0 +io). Thus, we will have:
1 W
2
@, (0,0)=@, (0,p")==—-¢
NP
o7 . (84)
e_of+2in’

@, (n,’p'):q)ylu (n"pl):f
\lﬂ'iO'L +2|77’i

In the integral equations, the nonlinear function
(nonlinear nucleus) and only that is written in the form:

, 1
NL(7", p') = 1 . (8

r
L+—y*- @5 (7", p')
T
From the symmetry of the optical field envelopes it
results:

®y1 (n"p):q)xl (77’7,01 . (86)

pu=+1

So, from now on, we will effect the calculus on (DX] s

and &, =0 . Thus, the expression of @
Vi Xl =1 X
yields:
D, =D, (7,p)-=-D,, @®
X Xy, m,p 2| X ( )
where:
_(o=pV
D Ifd @, (7", p') e
x = n : ’ (7 (! " p,
0 -0 4r 2 ’ 2 "o 2711(77 -7 )
L+ =7 | @5 ("0

(88)

In the first species approximation, in the D,

expression, we use the asymptotic representation to the
limit:
lim D, =D,, (89)

D
[0 Xl »(DXIO

where (Dxl and DXU are asymptotic forms for (I)Xl and
0

D, . Thus, for on it results the expression:

' o, (7".p) g
n +o . 77”“0' e 2i(n"-n"
on = dﬂ” . ’ (s " dp
?‘). —J:c 4r ? \/27“(77 /) )
2 2 ” ’
| =7 | @} ("0
T
(90)
Using the approximation:
.
f dn" —7n' ()]
0

and crossing to the limit 7" — 7 result the algebraic
formof D, :
0

1 (= 7n 1
D. =—_|~. .
N 4\F7(f7’) 4

2

2 —ry
— 2p — +1In ”
o +21n ,/ﬂi0'|2+2i77'i
92)

Thus, it results that the envelope solutions are
corresponding each to another:

@, (1.p)=2, (1. p)- 2D,
1

®,(1',p)= @, (7', p)= 7D,

93)

We enumerate a few properties of the envelope
amplitudes:

hm q)x] (77” ,0): cDxln (77"/0)|:1 —ﬁﬂ'}

r-y~—0 2|

. , : )
lim chl(U 7/D)=q)xlo(77;p)'|:1__77:|

I‘-}/2~>0 2|
(94)
lim @, (7. p)=@, (7' p)
4 , o (95)
lim @, (7', p)=, (7'.p)

The pure solitonic solution condition (as additive term
and o - complex) results under the form:
2 HI
7y o, +2in
y(n')= —ar (96)

and the DXn expression becomes [36,37]:
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N 1

L= : .97
0 4 r- }/ 77/) 2
cosh P
4r72
71_2
The soliton width, Ap , will be defined as:
2
Ap=;y(77)~\/? (98)

But, from the link relation (96) and the relation (98) it
results from the initial condition for ¥ (77') :

y('=0)="=-0,  (with o real) (99)

2r
for the function:
n' 1
D, = : (100)
’ 2\/;Ap :
cosh(ﬁ)
Ap

If we calculate the optical soliton width, Ap ,at Y2 of
maximum amplitude, it results [39,40]:

1 1 1
Ao = A- B-+ClJ+——'1 —.ln=1{. @101
P {(“ N AN “r}( :

A:,[O’E+2|7]’7B:ln|:}/22+f:|a
7z'~
Czln{yzz_ﬁ}-

A

where:

(102)

If we linearize the expression of Ap from (100),
comes out the dependence:

_A AT _Je_34B+yC | (103
RN AN ’{@ ve-g m}

wherefrom results an important quantity for the minimal
soliton width. Thus:

and

! 3B ++/C
APy = A.L/E +(\/§—«E)—8M}. (105)

The dependence Ap(l’) is presented in the Fig. 1.

T Ap()

Fig. 1. The dependence of the optical soliton width depending
on the parameter r = I/B .

4, Conclusions

In this paper was presented the spectral theory of the
nonlinear operators with applications to the inverse
scattering theory (the Ghelfand-Levitan-Marcenko theory)
concerning the screening spatial optical solitons theory.
Analytically, there was evaluated the strength of the
screening of spatial solitons in photorefractive crystals,
using specific elements from the inverse problem of the
scattering theory (at constant energy) after P. Sabatier.
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