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The generalized heat equation for laser- crystalline solid
Interaction
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The present paper is an approach to solve the semi-classical heat equation for the laser-solid interaction. The term “semi-
classical heat equation” is due to the introduction in the source term of quantum phenomena such as absorption of npn
photon. Consequently we consider that the interaction is done via n-photon absorption, where np, can vary froml to Nmax.
The solid is supposed to have a layered structure, each layer having a linear form for the thermal conductivity. In our model
the laser is acting in few decoupled Hermite-Gauss modes. For solving the heat equation, the powerful method of integral
transforms was used. In fact we generalized our previous theorem [Oane. M, S. L. Tsao, F. Scarlat, Temperature field

distribution in multi-layered solid media heated with multi-modes laser beam, Optics Laser Technol 2006, in press].
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1. Introduction

In the last century a new form of light, laser light, has
provided important contribution to medicine, industrial
material processing, data storage, printing and defense [1].
In all this areas of applications the laser-solid interaction
played a crucial role. The theory of heat conduction was
well studied long time age [2-9]. For describing this
interaction the classical heat equation was used in a lot of
applications. Apart of some criticism [10], the heat
equation still remains a powerful tool in describing the
thermal effects in laser-solid interaction [11-13]. The heat
equation can be used for describing both: interaction with
homogeneous [14-17] and non-homogeneous solids
[18-20]. A special attention was given to multi-layered
samples and thin films [21-33].

The purpose of this paper is to discuss some solutions
to the basic heat equation. It is well know that solutions to
the heat equation can only be obtained in simple analytical
form only when one is prepared to make a variety of
assumptions regarding the spatial and temporal
dependence on the heat source and on the geometry of the
sample. As the description of these boundary conditions
becomes more and more rigorous in terms of the actual
spatial and temporal dependence on the heat source, and
on the geometry of the sample, analytical and semi-
analytical solutions of the heat equation can no longer be
obtained. The main goal of the present paper is to present a
very complicate form of the heat source, the sample
description and the interaction between them in order to
still get a semi-analytical solution.

In the present paper, we consider that the solid sample
is multilayered, each layer having a linear thermal
conductivity. The laser beam is supposed to act in few
decoupled Hermite-Gauss modes. The laser-solid
interaction is approached as general as possible,

considering the n-photon absorption, where ny, can vary
froml to nya For solving the heat equation the integral
transform method was applied [14-17]. Our approached
relied on the consideration that the solid target has the
thermal parameters almost constant during the heating,
otherwise semi-analytical solutions can not be obtained.
Consequently the present model is excellent for laser
windows, which show low absorption coefficients (like for
example ZnSe, GaAs, etc.).

On the other hand the multi-photon absorption
processes in crystalline solids have been the subject of
extensive theoretical and experimental investigations since
the advent of the laser over four decades ago. The interest
in the multi-photon absorption has been stimulated by the
importance of nonlinear absorption in high-power laser
technology as well as by its fundamental role in solid-state
physics.

2. The laser-solid interaction

For describing the interaction between laser beam and
crystalline solid, the most general form of interaction was
considered. So let’s consider the n-photon absorption

phenomena, where Ny, can vary from 1 to ngy  The

multi-photon absorption can be described by the Beer-

n .
Lambert law: 4 = —Z a, | " where &, is the n-
nph

photon absorption coefficient, | is the light flux and x is
the propagation direction. We have:

a, =2W, nhew/1™ where 1 is the incident radiation
pi pi

n

intensity and the factor 2 accounts for electron-spin
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degeneracy. The n-photon transition probability Wnph is

given by the Goppert-Mayer n th-order time-dependent
perturbation theory The probability of a direct electronic
transition from an initial valence band v to a final
conduction band c, accompanied by the simultaneous
absorption of n photons, each of frequency w is expressed

by:
Wo, =5 |12 20 e

x 5[E, (k) - E, (K) - nhi] (33,;

2
L) <vi\H\wv>‘
(Ej-Ei-2hw) (EifEUfhw)‘

where: v,y ;...are the Bloch functions of the
crystalline  electrons in bands i, j,...,with energies
Ei,Ej,... .etc. The K integration is over the entire first

Brillouin zone, and H is the Hamiltonian interaction.

3. The theorem regarding the semi-classical
heat equation

Let’s try and prove the following theorem: suppose
we have a solid sample (parallelepiped) consisting of

layered media, ki(x)=k(x)+mi(x-x;), where , X € [X;, X;,; ]
with ,i=01,2,...,n—1, and that the sample is heated
by a multi-mode laser beam ({m,n}, where m and n are the
order of the Hermite-Gauss modes. Suppose that the
source term: f(x,y,z,t) = f(xv,2z)-[h(t)-h(t-t,)]and
the boundary conditions are at the interfaces (here h is the
step function, tis the time and t is the irradiation time):

Tict bl 06 Y320 ey = Tk (6 Y5200 e,
Titg, jk, 1 (X, y,Z,t)\ x=x,; = i, jk,1 (X )/,Z,t)\x:xi+1

. , (@

Kig - Ti e X=X, @)
ki+l'Ti+1,j,k,|'(XvYn U x=x,., =ki T, jkl X= le

At the margins of the sample, we consider:

ko - X=X, =hg- X=X, '
Ki - Ti, k.1 ' (% y,Z,t)‘y:yz/z ==hi - Tj, jk1 (X, szrt)‘y:yZIZ’

, 2

ki 'Ti,j,k,l'(nyvZ’t)‘ y=—y, /2 =hj 'Ti,j,k,l(X’yxZ’t)‘ y=—y, /2 @
Ki-Ti j kI z=2,12 =i - Ti j kI 2=2,12
ki Ti ik’ 72=-12,12 =h; “Ti,jk, z=—z3/2’
x=x, — 'In X=X, '

where h,, hi and h, are the surface heat transfer

coefficients (for a detailed discussion about h, see
reference 15, Appendix B). Under these circumstances the
theorem says that the heat equation:

(.92, ) - po T2

a —f(x,y,z,t),
which for k(x,y,z)=k(x) becomes:
Lé(k(x)ﬂjﬁ* T 1A _tlyzt), (@)
k(x) & &) & a® ya k(x)

where k - the thermal conductivity of the sample; 5 - the
thermal diffusivity of the sample. It has a rigorous semi-
analytical solution, of the form:

Tixy.20 = Z(ZZZZU

N M0 j=L k=1 1L

g(ijwuk!gl)x Ki, (/11'v>()>< Kk(/”ka)X K (,2) EZTLH

Non

(Breted)t C(Bratepd)ity)
O _ (1 g e Nh(t—t,)]x

L (% Y,2,1)

4)

where 4,44, &are  the eigenvalues of the

eigenfunctions:
= hi .
K| (ey,z) =cos(g -z)+_—sm(8| -2)

Ky (g, Y) = cos(p - y)+ S'n(Mk Y)

K-l S, av[”*W Jyer

with :ﬂi =pc (5)

Here: Li is the mass density; ¢; is the heat capacity;

J,y.Y,are the Bessel respectively the Weber functions.
We have:

— 1
g(ﬂ'J 1/1“8 ) T C(4)C (e )C () X
1Xie Y212 2302

S 1 TE0y20 K (4,09 K (4, Y) K (6, 2)dxdydz
(6)

yel-y2/2,y,12]  and
ze[-23/2, 23/2]. For the constants, we

Assume that:

have: C(4;) = Z I K” (X;, 4;)dX and analogue
i=0
formulas for the others two constants [34].
The indexes m and n, in equation (4), take into

account the decoupled Hermite-Gauss spatial modes. The
function f,(X,Y,2,t), in equation (6), is the heat rate

produced by the laser beam in solid, and is given by the
following formula:

fxyzt)=a, 1 [h(t) —h(t-t,)], where, as

Npn.i MmN
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we showed in the previous chapter, iisthe N,

Mo

photon absorption coefficient and Imﬁf' is the Hermite-
Gauss intensity of order (m,n) in the layer i. Formula (4)
defines the temperature Ti,nph (x,Y,2,t), which is the
temperature field determined only by the absorption of
N, -photon in the layer i. Demonstration of the theorem
is given in chapter 4.

4. The demonstration of the theorem

Demonstration of the theorem starts with the
observation that the heat equation is linear and therefore it
is enough to demonstrate the theorem for one single mode
(m ,n) and for a given number of photons interaction.

For a single layered media the heat equation is

) 2
(Kpl(c>l<) 6T,) K,(ax)zﬁ T .
Y (7)
+ Ki(x)o 2T _ﬂ: _fixyy,zht)
022 ot PiCj

where: X € [X;, X;,,].-
Apply the integral transform Rij (4;, %;) which
satisfies the equation:

K. (x) 8K, (/I ,X) 27,
8x : ) ﬂ' K (ﬂ,j,X)ZO (8)
One can check by d|rect algebraic calculation, that:

Rad)A {%W J O[Z%W ] ©)

Applying the operator Kij (4;,X) to equation (7), obtain

2°T, oT, _ fi(4;.y.zt) Where:
at at PiCi
(10)
|+1 and
T; i(4j,y,.20) = C(i) _[T (x,y,2, t)K,J(/IJ,x)dx
(11)
|+1
fi(Aj.y.2.0) = ¢ i jf (x,y,2, t)K,J(ﬂ],x)dx
Here [34]: c(2,) = Zj KZ(x, A, )dx - (13)

In the same way, one can apply the functions:
Ky (24, Y) and K (g1,2) which satisfy the equations:

K (1Y)
7z+#l<2Ky(lukvy):O (14)

=+ 67K, (5,2)=0

Is obtained the following equation:

kzﬁi(kj,ukﬁl,t)+uﬁfi(kj,uk,8|,t)+

Ty (A j bk £1.0) _fixy,zt)
at CpiC

(15)
+8|2Ti(7»j,uk,8|,t)+

were for example:
r _ 1
Ty #0600 = etancan *
Xyt ¥2l2 712

x [ [ Te0y 20Ky, K(s, ¥) - K, (5, 2)dxdydz

X —Yp/2-2312
(16)

In order to eliminate the time parameter apply the
direct and inverse Laplace transform to the (15) equation.
If we have, like in most
cases: f(x,y,z,t)= f(x v, z)-[h(t)-h(t-t,)], than one
can obtain the solution given in the present article.

5. Conclusions

As a conclusion we can say that the semi-classical
heat equation which considers the multi-photon absorption
for the laser-solid interaction was solved. The solid is
supposed to be layered , each layer having a linear thermal

conductivity (ki(X)=k(x;)+mi(x-x)), where ,X € [X;,X;,]
with ,i=012,...,n-1) . One can choose
m=0,i=01,2,...,n—1 and obtain a layered structure

with constant thermal conductivity on each layer. Another
possibility is to take M, # Ofor a given I and thus to

obtain a thermal conductivity which can describe, very
close to reality, an interface between two layers.

From a practical point of view, the eigenvalues can be
obtained from the boundary conditions [34]. Also the

constants A, B, can be obtained easily from the same

boundary conditions. One may ask if the proposed model
could have practical applications. The answer is positive.
Nonlinear spectroscopy has proved to be invaluable in
determining the optical and electronic properties of
crystalline solids; e.g., when one-photon absorption is
forbidden by selection rules, a higher-order multi-photon
absorption may be allowed. Even when one-photon
absorption is allowed, because most of the experimentally
studied properties are characteristic to the surface rather
than to the volume as a consequence of the drastic
attenuation of radiation as it propagates into the sample.
Multi-photon experiments, on the other hand, can enable
the study on the properties of the crystalline volume,
because of the significantly smaller values of the multi-
photon coefficients. In a recent paper [35], we have
calculated the thermal field produced by two-photon
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absorption coefficient. The conclusion was that the
thermal field is detectable by experiments, even when one-
photon absorption is present. So, we solved the semi-
classical heat equation for laser-solid interaction,
introducing quantum physics effects in the source term.
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