
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No. 4, August 2006, p. 1391 - 1394 
 

The generalized heat equation for laser- crystalline solid 
interaction 
 
M. OANEa*, F. SCARLATa,b, I. N. MIHAILESCUa, C. OPROIUa, A. PELEDc  
aNational Institute for Laser, Plasma and Radiation Physics, P.O.Box  MG 36 Magurele R-76900 Bucharest, Romania 
b Department of Physics, Valahia University of Targoviste, 0200 Targoviste, Romania 
cHolon  Institute of Technology , 52 Golomb Str,. Holon 58102, Israel 
 
 

 
The present paper is an approach to solve the semi-classical heat equation for the laser-solid interaction. The term “semi-
classical heat equation” is due to the introduction in the source term of quantum phenomena such as absorption of nph 
photon. Consequently we consider that the interaction is done via n-photon absorption, where nph can vary from1 to nmax. 
The solid is supposed to have a layered structure, each layer having a linear form for the thermal conductivity. In our model 
the laser is acting in few decoupled Hermite-Gauss modes. For solving the heat equation, the powerful method of integral 
transforms was used. In fact we generalized our previous theorem [Oane. M, S. L. Tsao, F. Scarlat, Temperature field 
distribution in multi-layered solid media heated with multi-modes laser beam, Optics Laser Technol 2006, in press]. 
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1. Introduction 
 
In the last century a new form of light, laser light, has 

provided important contribution to medicine, industrial  
material processing, data storage, printing and defense [1]. 
In all this areas of applications the laser-solid interaction 
played a crucial role. The theory of heat conduction was 
well studied long time age [2-9].  For describing this 
interaction the classical heat equation was used in a lot of 
applications. Apart of some criticism [10], the heat 
equation  still remains a powerful tool in describing the 
thermal effects in laser-solid interaction [11-13]. The heat 
equation can be used for describing both: interaction with 
homogeneous [14-17] and non-homogeneous solids            
[18-20]. A special attention was given to multi-layered 
samples and thin films [21-33].   

The purpose of this paper  is to discuss some solutions 
to the basic heat equation. It is well know that solutions to 
the heat equation can only be obtained in simple analytical 
form only when one is prepared to make a variety of 
assumptions regarding the spatial and temporal 
dependence on the heat source and on the geometry of the  
sample. As the description of these boundary conditions 
becomes more and more rigorous in terms of the actual 
spatial and temporal dependence on the heat source, and 
on the geometry of the sample, analytical and semi-
analytical solutions of the heat equation can no longer be 
obtained. The main goal of the present paper is to present a 
very complicate form of the heat source, the sample 
description and the interaction between them in order to 
still get a semi-analytical solution.  

In the present paper, we consider that the solid sample 
is multilayered, each layer having a linear thermal 
conductivity. The laser beam is supposed to act in few 
decoupled Hermite-Gauss modes. The laser-solid 
interaction is approached as general as possible, 

considering the n-photon absorption, where nph can vary 
from1 to nmax. For solving the heat equation the integral 
transform method was applied [14-17]. Our approached 
relied on the consideration   that the solid target has the 
thermal parameters almost constant during the heating, 
otherwise semi-analytical solutions can not be obtained.  
Consequently the present model is excellent for laser 
windows, which show low absorption coefficients (like for 
example ZnSe, GaAs, etc.). 

On the other hand the multi-photon absorption 
processes in crystalline solids have been the subject of 
extensive theoretical and experimental investigations since 
the advent of the laser over four decades ago.  The interest 
in the multi-photon absorption has been stimulated by the 
importance of nonlinear absorption in high-power laser 
technology as well as by its fundamental role in solid-state 
physics. 
 

2. The laser-solid interaction 
 
For describing the interaction between  laser beam and 

crystalline solid, the most general form of interaction was 
considered. So let’s  consider the n-photon absorption 
phenomena, where phn  can vary from 1 to nmax.  The 

multi-photon absorption can be described by the Beer-

Lambert law: ∑−=
ph

ph

ph
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n
ndx
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phnα is the n-

photon absorption coefficient, I is the light flux and x is 
the propagation direction. We have: 
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intensity and the factor 2 accounts for electron-spin 
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degeneracy.  The n-photon transition probability 
phnW is 

given by the Goppert-Mayer n th-order time-dependent 
perturbation theory The probability of a direct electronic 
transition from an initial valence band υ  to a final 
conduction band c, accompanied by the simultaneous 
absorption of n photons, each of frequencyω is expressed 
by: 
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where: ..., ji ψψ are the Bloch functions of the 
crystalline  electrons in bands i, j,…,with energies  

,..., ji EE  ,etc. The k
r

integration is over the entire first 
Brillouin zone, and H is the Hamiltonian interaction.  
 

3. The theorem regarding the semi-classical  
    heat equation  
 
Let’s try and prove  the following theorem:  suppose 

we have a solid sample (parallelepiped)  consisting of 
layered media, ki(x)=k(xi)+mi(x-xi), where ],[, 1+∈ ii xxx  

with 1,...,2,1,0 , −= ni ,   and that the sample is heated 
by a multi-mode laser beam ({m,n}, where m and n are the  
order of the Hermite-Gauss modes. Suppose that the 
source term: )]()([),,(),,,( 0tththzyxftzyxf −−⋅= and 
the boundary conditions are at the interfaces (here h is the 
step function, t is the time and 0t is the irradiation time):  
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At the margins of the sample, we consider:  

 

00
),,,(),,,(' ,,,00,,,00 xxlkjxxlkj tzyxThtzyxTk == ⋅=⋅ ,                                         

2/,,,2/,,, 22
),,,(),,,(' yylkjiiyylkjii tzyxThtzyxTk == ⋅−=⋅ , 

               

2/,,,2/,,, 22
),,,(),,,(' yylkjiiyylkjii tzyxThtzyxTk −=−= ⋅=⋅

,      (2) 

2/,,,2/,,, 33
),,,(),,,(' zzlkjiizzlkjii tzyxThtzyxTk == ⋅−=⋅

, 

2/,,,2/,,, 33
),,,(),,,(' zzlkjiizzlkjii tzyxThtzyxTk −=−= ⋅=⋅ , 

nn xxlkjnnxxlkjnn tzyxThtzyxTk == ⋅−=⋅ ),,,(),,,(' ,,,,,,
, 

 

where 0h , hi and nh are the surface heat transfer  
coefficients (for a detailed discussion about h, see 
reference 15, Appendix B). Under these circumstances the 
theorem says that the heat equation:  
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 where k - the thermal conductivity of the sample; γ  - the 
thermal diffusivity of the sample. It has a rigorous semi-
analytical solution, of the form:  
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where lkj εµλ ,, are the eigenvalues of the 
eigenfunctions: 
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Here: iρ is the mass density; ci is the heat capacity; 

00 ,YJ are the Bessel respectively the Weber functions. 
We have:  
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Assume that: ]2/,2/[ 22 yyy −∈  and 

]2/,2/[ 33 zzz −∈ . For the constants, we 
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formulas for the others two constants [34]. 
The indexes m and n, in equation (4), take into 

account the decoupled Hermite-Gauss spatial modes. The 
function ),,,( tzyxf i , in equation (6), is the heat rate 
produced by the laser beam in solid, and is given by the 
following formula: 
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we showed in the previous chapter, inph ,α is the phn -

photon absorption coefficient and  in
mn

phI ,  is the Hermite-
Gauss intensity of order (m,n) in the layer i.   Formula (4)  
defines  the temperature ),,,(, tzyxT

phni , which is the 

temperature field determined only by the absorption of 

phn -photon in the layer i.  Demonstration of the theorem 
is given in chapter 4. 

 
 
4. The demonstration of the theorem 
 
Demonstration of the theorem starts with the 

observation that the heat equation is linear and therefore it 
is enough to demonstrate the theorem for one single mode 
(m ,n) and for a given number of photons interaction. 

For a single layered media the heat equation is  
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where: ],[ 1+∈ ii xxx .                             

Apply the integral transform ),( ijij xK λ which 
satisfies the equation:                                     
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In the same way, one can apply the functions: 
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Is obtained the following equation:  
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In order to eliminate the time parameter apply the 
direct and inverse Laplace transform to the (15) equation. 
If we have, like in most 
cases: )]()([),,(),,,( 0tththzyxftzyxf −−⋅= , than one 
can obtain the solution given in the present article. 
 

5. Conclusions 
 
As a conclusion we can say that the semi-classical 

heat equation which considers the multi-photon absorption 
for the laser-solid interaction was solved. The solid is 
supposed to be layered , each layer having a linear thermal 
conductivity (ki(x)=k(xi)+mi(x-xi), where ],[, 1+∈ ii xxx  

with 1,...,2,1,0 , −= ni )  . One can choose 
mi=0 1,...,2,1,0 , −= ni  and obtain a layered structure 
with constant thermal conductivity on each layer. Another 
possibility is to take 0≠im for a given I and thus to 
obtain a thermal conductivity which can describe, very 
close to reality, an interface between two layers.  

From a practical point of view, the eigenvalues can be 
obtained from the boundary conditions [34]. Also the 
constants ii BA , can be obtained easily from the same 
boundary conditions. One may ask if the proposed model 
could have practical applications. The answer is positive. 

Nonlinear spectroscopy has proved to be invaluable in 
determining the optical and electronic properties of 
crystalline solids; e.g., when one-photon absorption is 
forbidden by selection rules, a higher-order multi-photon 
absorption may be allowed. Even when one-photon 
absorption is allowed, because most of the experimentally 
studied properties are characteristic to the surface rather 
than to the volume as a consequence of the drastic 
attenuation of radiation as it propagates into the sample. 
Multi-photon experiments, on the other hand, can enable 
the study on the properties of the crystalline volume, 
because of the significantly smaller values of the multi-
photon coefficients. In a recent paper [35], we have 
calculated the thermal field produced by two-photon 
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absorption coefficient. The conclusion was that the 
thermal field is detectable by experiments, even when one-
photon absorption is present. So, we solved the semi-
classical heat equation for laser-solid interaction, 
introducing quantum physics effects in the source term.   
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