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The particle distribution functions and applications 
 
S. OSTOJIC*, R. SASIC 
Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia 
 
 
The new generalized logarithmic equation defined by four parameters, called LG4, was formulated and proposed for 
describing particle size and shape distributions. For special choice of the parameters the LG4 was reduced to the 
logarithmic distribution LG2 defined by two parameters which permits the selection of mean value of the distribution as the 
size parameter appears explicitly in the distribution function. The LG2 has been suggested as a model for size and shape 
distributions of the particles (the ''fourth state of matter'' according to Heywood's definition) as, for example, the metallic and 
ceramic particles which attract a good deal of public attention as new promising high-performance materials for magnetic 
materials and then chemical catalysts, sintering promoting materials, sensors, etc. The shape and similarity of the particle 
for some purposes are very important. Total volume, total surface or any other useful property of the sample, may be 
related to shape and size of individual particles. If all particles are geometrically similar, all the subsequent treatment is 
simplified substantially in terms of shape. By introducing the shape parameter of the particle, the generalized similarity and 
the elliptic factor of the assembly of particles the application of the LG2 for the study of the shape distribution of the 
projected Nd2Fe14B particles is referred in this paper. 
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1. Introduction 
 
A lot of various materials can be used as a coating, 

depending on the future use of optical fiber with 
composite magnetic coating. Magnetic field sensors based 
on optical fibers with composite coating are modern 
materials with wide range of application in high sensitive 
measuring techniques in nearly all parts of engineering. 
Optical fiber with modified coating polymer – magnetic 
powder can be used as a sensing element and the element 
of magnetometer on the basis of optical fibers. Composite 
coating with magnetic powder can be used as a locator for 
optical fiber. There are a lot of applications of these 
magnetic materials in biomagnetic systems, in medicine, 
diagnostics, etc. The main study topic of many scientific 
institutions is investigation of dependence of modified 
optical fiber as a magnetic field sensing element on 
coating process. This topic was realized through 
characterization of components which are in the composite 
coating. Special attention was paid to the characterization 
and chosing of magnetic powder of optimal quality which 
will allow the best sensitivity and reversibility of modified 
optical fiber and the whole sensing element. Composite 
coating with magnetic powder of high-coercive magnetic 
materials based on Neodymium Iron Boron (Nd-Fe-B) 
attracts a good deal of public attention as new promising 
high-performance materials. In recent time the study topic 
of many scientific institutions throughout the world is the 
process of obtaining high-coercive magnetic materials 
based on Nd-Fe-B. In order to fulfill economic requests for 
the lowest price, the optimization weight percent of 
magnetic powder in the composite coating are of great 
importance. Besides that, the particle size and shape 
distributions together with the microstructure of Nd2Fe14B 
are significant for magnetic properties. They have also 
considerable influence on homogeneity of polymer – 
magnetic medium suspension. Therefore, it was specially 
important to find particle size and shape distributions of 
magnetic powder [1-6]. Experimental particle sizes often 

obey a lognormal size distribution and other 
logarithmically skewed distributions, besides Rosin-
Rammler, Nukiyama-Tanasawa distributions, etc.[7-20]. 
In earlier distribution functions studies of the authors, a 
number of properties of the general family of 
logarithmically skewed distributions (the new generalized 
logarithmic distribution defined by four parameters, LG4) 
have been described. In previous works, the authors have 
presented analyses of previously developed distributions, 
development and application of the logarithmic 
distribution defined by two parameters (LG2), and 
comparisons of the various distribution functions with 
experimental data. The authors showed in details that 
previously applied logarithmic distribution equations, 
developed by other authors, can be obtained from the LG4 
for special choice of its parameters and that the LG2 
(special case of the LG4) better fitted to the experimental 
data than the well-known lognormal and logarithmic 
distribution defined by one parameter LG1 which are also 
special cases of the LG4. The LG2 distribution, the mean 
value of which appears explicitly in its probability density 
equation, has been suggested as a model for size and shape 
distributions of the particles [11,14,18].  

In this paper the authors continue with the application 
of the LG2 for the study of the shape distribution 
introducing the shape parameter and the generalized 
similarity. Using the longest and shortest dimension 
distributions of projected particles, it was found the 
distribution of the particle shape parameter. An approach 
to the study of the particles generalized similarity was 
performed. The deviation of the particle shape from the 
elliptical shape and the particle outline smoothness was 
analyzed. The elliptic factor of an assembly of particles is 
also defined, and the LG2 is applied to estimate this factor. 
The LG4 and LG2 equations can be applied to a wide 
variety of experimental data. As an illustration of the 
proposed model, the particle shape analyses of the 
Nd2Fe14B magnetic powder are performed. 
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2. The LG4 and LG2 logarithmic distributions  
 
Let us introduce the new distribution defined by four 

parameters (LG4) (Appendix A, A1-A6) with the 
probability density function (PDFLG4) [11,18]:  
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where p , px1 , px2  and pζ  are the parameters of this 
distribution.  

The mean value of the PDFLG4 is (A7) 
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The standard deviation of the PDFLG4 is (A8-A11)  
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The geometric mean of PDFLG4 is (Appendix B) 
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On combining (2.2) and (2.4) we obtain 
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Note that the parameter p  does not appear in (2.5). 
If 23p −= , the exponential terms in (2.2) and (2.3) 

vanish so the mean value is reduced to pp xx 21  and the 

standard deviation becomes ( ) 1exp 2
21 −ppp xx ζ . 

Hence, the variation of pζ  will change the shape of the 
distribution curve while the mean value maintains 

invariant. Thus, it can be written ( )22 1p p px x x= . Let 

us denote px x= , 11 xx p = , 1
2

22 xxxx p == , 

ζζ =p  and pσ σ= . Then, the PDFLG4 becomes the 
probability density function defined by two parameters 
(PDFLG2): 
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Substituting 23−=p  ( ζζ =p , pσ σ= ) into 

(2.3) and supposing 12 <<ζ  ( ( )2 2exp 1ζ ζ≈ + ) we 

have 

ζσ x≈ , i. e.  
x
σζ ≈ .   (2.7) 

Therefore, under assumption that a distribution is 
sufficiently narrow, the parameter ζ  could be a measure 
of the degree of variation (or spread) of the distribution.  

 
2.1. Analysis of the real powder (Nd2Fe14B) as an  
       illustration of developed model 
 
The particles of Nd2Fe14B were analyzed by scanning 

electron microscopy (SEM) with spectrometer type 
«Philips XL-30 DX 4i» and light microscope «Reichert» 
type POLYVAR-MET with the quantitative image 
analyzer Q500MC-Leica with software Qwin (1997) [5]. 
The distributions of geometrical equivalent dimensions of 
selected samples defined in projection (the longest R  and 
shortest r  dimensions and the area S ) were examined 
and determined. Note geometrical equivalent dimensions 
are defined in projection and therefore the particle size and 
shape are, in fact, size and shape of projected particle. In 
order to simplify, “projected particles” are often termed - 
“particles” in this paper. At the beginning of the 
investigation, particles were in the form of small plates (in 
space) having linear dimensions of about mµ150100 − . 
The projection of these Nd2Fe14B particles were polygon 
in shape. The particles had tendency to become elliptic by 
grinding. After 2.5 hours of grinding, the particles were of 
optimal size for the composite coating of sensor element 
and the forms of small plates were mostly elliptic. A large 
number ( )700=n  of these particles (made from the 
origin particles) were analyzed. It was obtained the 
empirical distributions of: the longest dimension R , the 
shortest dimensions r  and the surface area S  of 
projected particles. The mean, minimum and maximum 
values of those parameters are given in Table 1. The 
distribution LG2 will be fitted to the empirical 
distributions of geometrical equivalent dimensions of 
selected samples defined in projection (the longest R  and 
shortest r  dimensions and the area S ) using the 
OriginPro 7.5 in order to obtain the unknown parameters. 
 

Table 1. The experimental data for the particles of Nd2Fe14B [5]. 
 

 Mean value Minimum Maximum 
Longest dimension ( )R , mµ  91448.0R =  49020.0Rmin =  54695.1Rmax =  

Shortest dimension ( )r , mµ  68922.0r =  1634.0rmin =  4756.1rmax =  

Surface ( )S , 2mµ  49142.0S =  1335.0Smin =  2425.1Smax =  
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To be fitted to the Nd2Fe14B particles empirical 

distributions (of R , r  and S , respectively) the PDFLG2 
takes the forms: 
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The parameters of distribution functions are obtained 
from a best fit to the experimental data by using the 
OriginPro 7.5 program based on the Levenberg-Marquardt 
algorithm: 28713.0=δ , 32992.0=ρ  and 50502.0w = . 
The values of the corresponding DoFChi 2  are: 
( ) 2

R,2LG
2 m05059.0DoFChi −µ= , ( ) 2

r,2LG
2 m00600.0DoFChi −µ= , 

( ) 4
S,2LG

2 m0188.0DoFChi −µ= . The empirical curves 
together with corresponding fitted density functions are 
shown in Figs. 1-3.  
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Fig. 1.  The PDFLG2 curves  fitted to the empirical  

distribution of the particle longest dimension. 
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Fig. 2.  The PDFLG2 curves fitted to the empirical  

distribution of the particle shortest dimension. 
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Fig. 3.  The PDFLG2 curves fitted to the empirical  

distribution of the particle surface. 
 
 

3. The shape parameter distribution of the  
    particles 
 
Consider an assembly of n  particles. Let us define 

the shape parameter of the i th ( )ni ,...,2,1=  particle as 

the longest/shortest dimension ratio iii Rr=ξ , 

( )10 ≤< iξ . Let two particles be mutually generally 
similar if they have the same shape parameter. Now we 
will determine the shape parameter distribution based on 
the distributions of the longest and shortest dimensions of 
the particles. If the probability density functions of the 
longest and shortest dimensions distributions are ( )RF  

and ( )rf , respectively, the probability that any particle 

has the ( )r Rξ =  in an interval ( )ξξξ d+,  

( )10 ≤< ξ  is  

( ) ( ) ( )
( ) ξ

ξ
ξ ddR

RD
rRDRfRFC

R

R ,
,

0
∫
∞→

→

,      (3.1) 

where C  is the normalizing factor and 
( )
( )ξ,

,
RD

rRD
 is 

Jacobian.  
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The integral (3.1) can be solved using Appendix C. If 
in the integral of general form (C1) we substitute  
R  for x , 2−  for α , 1R  for 1u , 1

2 / RR  for 1v , 
ξ1r  for 2u , ( )ξ12 rr  for 2v , δ  for β , ρ  for γ , 

we find, on the basis on (C2), the probability that ξ  
arrives in a range ( )ξξξ d+, : 
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where cCξ  is the normalizing factor and 
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The integral in the denominator of (3.4) will be 
determined using (A3) and (A4). If we put in (A3): 

ξ=x , 3 2p = − , cpx 11 ξ= , cpx 22 ξ= , 

22 ρδζ +=p  we find by using (A4) the density 

function of the shape parameter ξ : 
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This distribution (3.5) has the similar form as one of 

the LG2. 
The mean value of the shape parameter is 
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The integral in (3.6) can be solved using Appendix A. 

By changing of variables: ξ=x , 21−=p , 
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For the Nd2Fe14B particles we obtain 64821.0=ξ .  
The mean value of the shape parameter square is: 

( ) ξξξξ dh∫=
1

0

22 .

The integral in (3.8) can be solved using Appendix A, 
too. On making change of variables ξ=x , 21=p , 

cpx 11 ξ= , cpx 22 ξ= , 22 ρδζ +=p , 
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For the Nd2Fe14B particles 45538.02 =ξ .       (3.10) 

By using (A9), (3.7) and (3.9) we find the variance  
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For the Nd2Fe14B particles the variance is 

035197.02 =ξσ  and the standard deviation is 

18761.0=ξσ . 
If all particles have the shape of ellipse the well-

known canonical equation of which is 12

2

2

2

=+
b
y

a
x

, 

( )ab ≤  then the longest dimension is a2 , and the 
shortest dimension is b2 . According to the 
aforementioned definition we can say that two particles of 
the elliptic shape are mutually similar if they have the 
same ( )b a ξ=  ratio. Moreover, these particles are 
mutually similar in mathematical meaning of the word.  

The probability density distribution curve of the shape 
parameter ξ  is shown in Fig. 4. 

The most of the particles have shortest/longest 
dimension ratio around 6.0  or 5:3 . The probability 
density that the particle is of the circular shape is about 

97.0 . The probability that ξ  arrives in the range 
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( )1,9.0  (the particles are approximately circular) is about 
%11 .  
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Fig. 4. The probability density distribution curve of the shape 

parameter ξ . 

 
4. An approach to the generalized similarity  
    of the particles 
 
As foresaid, some useful properties of the sample, 

may be related to shape of individual particles. For 
example, if all particles are geometrically similar, all the 
subsequent treatment is simplified substantially in terms of 
shape. Hence, it is sometimes important to analyze 
similarity of the particles. The purpose of this section is 
development and application of a method for evaluation of 
the particle similarity for particular case of elliptic 
particles. 

Consider again an assembly of n  particles. Let us 
start from the identity 
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where t  is any real number and iR  and ir  are the longest 
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( )

22
2

2
1 12 1

212 2 2 2

11 1 1 1

1 1

n nn
i i ii in i ii i

i nn n n n
i i

ii i i i
ii i i i

R R rR r
r

g t R t t
R

Rr r R r

= ==

=

== = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎜ ⎟= + = + + −⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑∑
∑

∑∑ ∑ ∑ ∑

 

( )
2

12 2
2

2 1
1 1

22 2 2

11 1 1

n i jn in
i j

i i i i j i j
i i

nn n n
ii i i

ii i i

rr
R RR R r R R

t
Rr R r

−

= =
= =

== = =

⎛ ⎞⎛ ⎞⎜ ⎟⎛ ⎞ ⎛ ⎞ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟= + +
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑∑ ∑

∑∑ ∑ ∑

. (4.3) 

On making the substitution 

∑

∑

=

=−= n

i
i

n

i
ii

R

rR
t

1

2

1  we can 

write: 

( )
2

122 2

2 1
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212 2 2 2 2

11 1 1 1 1

1 1

n i jn in
i j

i ii i i j i jn ii i
i nn n n n ni i

ii i i i i
ii i i i i

rr
R RR rR r R Rr

R
R

Rr R r R r

−

= =
==

=

== = = = =

⎛ ⎞⎛ ⎞⎜ ⎟⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟− = − =
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑∑∑
∑

∑∑ ∑ ∑ ∑ ∑

 (4.4) 
Let us introduce the notation  

.

1

2

1

2

2

1

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛

=

∑∑

∑

==

=

n

i
i

n

i
i

n

i
ii

rR

rR
η   (4.5) 

and by substituting into (4.4) we obtain 

( )
2

12 2

2 1
2 1

212 2 2

11 1 1

1 1

n i jin
i j

i i i j i jn
i i

i nn n ni i
ii i i

ii i i

rr
R RR r R Rr

R
R

Rr R r
η

−

= =
=

=

== = =

⎛ ⎞⎛ ⎞⎜ ⎟⎛ ⎞ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟− = − =
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑∑
∑

∑∑ ∑ ∑

. (4.6) 

Since the left and right hand sides of (4.6) are the 
sums of squares it is clear that: 

a) 01 ≥−η , i. e. 01 >≥η   (4.7) 
and 

b) 

( )( )( ) ( )1

2

1

, 1,2,3,..., 1

n

i i
ji i i

n
i j i

i
i

R rrr ri j i j i n
R R R R

η=

=

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟∀ ∀ ≠ = ⇔ = = ⇔ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

   (4.8) 
or η  is equal to unity if, and only if, all particles have the 
same ξ , and  

∑

∑

=

== n

i
i

n

i
ii

R

rR

1

2

1ξ .       (4.9) 

Having in view a) and b) it can be concluded that if η  
is equal to unity all particles are mutually generally 

similar and their shape parameter is 

∑

∑

=

=
n

i
i

n

i
ii

R

rR

1

2

1 . 

If we substitute ξ−  for t  in (4.3) we have: 
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   (4.10) 
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where 
i

i
i R

r
=ξ . The following inequalities are fulfilled: 

( )
⎟
⎠

⎞
⎜
⎝

⎛
≤−

⎟
⎠

⎞
⎜
⎝

⎛
≤

⎟
⎠

⎞
⎜
⎝

⎛ ∑
∑

∑∑
=

=

==

n

i
i

n

i
iin

i
i

n

i
i r

nR
R

rr

nR

1

2

22
max

2

1

2

1

2

1

2

22
min 1 ξξ σ

ξξ
σ , (4.11) 

where { }nRRRR ...,,min 21min = , 

{ }nRRRR ...,,max 21max =  and ( )
2

1

2 1∑
=

−=
n

i
in

ξξσξ  

is the variance*.  
On combining (4.10) and (4.11) it follows: 

2
2

2 2
12 21

min max
22 2 2

11 1 1

1
1 1

n n
i i i

i i
nn n n

ii i i
ii i i

R R r
R R

Rr r r
n n

ξ ξσ σ
ξ η= =

== = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎜ ⎟≤ − + − ≤

⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑

∑∑ ∑ ∑

.    (4.12) 
2
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R R r
R R

r rRr

ξ ξσ σ
ξ η= =

==

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
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⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑

∑∑

,   (4.13) 

where 2r  is the mean value of 2r . 

Hence, if the variance tends to zero the factor η  will 
cluster more and more closely about unity, or  

if 0→ξσ , then 

∑

∑

=

=→ n

i
i

n

i
ii

R

rR

1

2

1ξ  and 1→η . 

For the Nd2Fe14B particles: 
2

2

1 1
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0.016 1 0.16
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i i i

i i
nn

ii
ii

R R r

Rr
ξ η= =

==

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
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⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑

∑∑
. (4.14) 

If the particles are of the elliptic shape, then it can be 
written 

iii rRS
4
π

=  or 
π

i
ii

SrR 4
= . Thus, 
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∑

==

=

π
π

η ,    (4.15) 

where 2R  is the mean value of 2R . 

                                                 
* The variance is defined by ( ) ( )22

1
1

n

i
i

nσ ξ ξ
=

= − −∑ . 

However, when n  is large, the diference between using n  or 

( )1n −  as divisor is small and it can be of little importance if 
we replace the summation by integration, later. 

By putting 23−=p  in (A8) we have 

( ) ( )222 exp δRR =  and ( ) ( )222 exp ρrr = . (4.16)  

On combining (4.15) and (4.16) we find 

( )[ ]22
2

exp
4

ρδ
π

η +−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

rR
S .   (4.17) 

For the Nd2Fe14B particles: 81.0≈η . 
This approach has the advantage that the expression of 

the coefficient η  is simpler than the expression of the 

standard deviation ξσ . The disadvantages are that the 
model can not be applied to nonelliptic particles and does 
not enable the estimation of the degree of similarity of the 
elliptical particles. Namely, the method could be useful for 
the fast interpretation of only two cases: the particles are 
mutually similar ( )1η =  or the particles are not mutually 
similar. If the particles are not mutually similar then 

10 <<η , but in this way it is not possible to determine 
the value of η . For the similarity degree estimation the 

variance of the shape parameter, 2
ξσ  may be used. 

 
4.1. The elliptic factor of the assembly of particles 
 
The geometric mean value of iS  ( )ni ,...,2,1= , 

under assumption that the particles are of elliptic shape, is: 

n
nn

n
ng rRrRrRrRSSSSS

4
...

444
... 332211321

ππππ
==

.     (4.1.1) 
From (4.1.1) follows  
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n

n
n

n
n

nn

n

g rRrrrrRRRRrrrrRRRRS
4

......
4

......
4 321321321321

πππ
==⎟

⎠
⎞

⎜
⎝
⎛=

  (4.1.2) 
where gR  is the geometric mean value of iR  

( )ni ,...,2,1=  and gr  is the geometric mean value of 

ir . ( )ni ,...,2,1= . Then, the following relations are 

satisfied (Appendix B) ( 23−=p ): 

( )2exp 2wSSg −=   (4.1.3) 

( )2eR 2δ−= xpRg   (4.1.4) 

( )2exp 2ρ−= rrg .          (4.1.5) 
Now, we introduce parameter: 

gg

g

rR

S

4
π

ν = .          (4.1.6) 

Substituting (4.1.3) - (4.1.5) into (4.1.6) we find 

2
exp

4

222 w

rR

S −+
=

ρδ
π

ν .           (4.1.7) 

It is clear that for particles of elliptic shape, ν  is 
equal to unity. Generally, for arbitrary shapes of particles, 
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ν  may be greater or less than unity. Having in view the 
bulk description of the particles, the parameter ν  may be 
used as the parameter to measure the degree of elliptic 
shape of an assembly. Then we denote ν  the elliptic 
factor of the assembly of particles. We also introduce 
„equivalent elliptic particle“, an imaginary particle of the 
elliptic shape for which the longest and shortest 
dimensions (axes) are equal to those of the projected 
particles. If ν  is less than unity, the bigger particles are 
mostly close to a polygonal shape whose surface is smaller 
than surface of „equivalent elliptic particle“ and the 
smaller particles are mostly of approximate elliptic shape. 
If ν  is greater than unity the shape of the projected 
particles has dominant convexity of jagged outline with 
regard to the outline shape of an imaginary elliptic particle 
for which the longest and shortest dimensions are equal to 
these projected particles. For the Nd2Fe14B particles we 
find that 96.0≈ν , this being in agreement with the 
analyses by the microscopes and the quantitative image 
analyzer. 

On combining (4.17) and (4.1.7) it is obtained: 
( )[ ]222 2exp ρδη +−= w . (4.1.8) 

According to the above conclusion that the particles of 
elliptical shape are mutually similar for 1=η  it follows 

that in this case ( ) 02 222 =+− ρδw  or 

( )222 ρδ +=w . From 01 >≥η  we have 

( ) 02 222 ≤+− ρδw  or ( )222 ρδ +≤w . 
 
5. Conclusions 
 
The new logarithmic distribution defined by four 

parameters and denoted as LG4 is proposed in this paper. 
One special case of the LG4 is the distribution function 
defined by two parameters, LG2. The mean value, as the 
size parameter, appeared explicitly in this distribution. The 
LG2 parameters are determined from a best fitting to the 
empirical distributions of various projected Nd2Fe14B 
particles parameters (the longest and shortest dimensions 
and the surface area of the particles). The LG2 equation 
has been adopted as a model for shape distributions of the 
Nd2Fe14B particles. However, the performed modelling 
may be useful for various applications regardless of the 
type of particles. The shape parameter of the particle is 
introduced and then the generalized similarity and the 
elliptic factor of the assembly of particles are defined. 
Using the LG2 distribution of the longest and shortest 
dimensions the shape parameter distribution is 
determined. Method for the particle similarity 
consideration is developed. The procedure of this method 
is simple, easy and quick, but the method has limited 
application range and it can be useful for the description of 
elliptical particles.  

 
Notation 
Useful facts about the Poisson’s integral, Error 

Function and Laplace's function: 

Poisson’s integral: ( )2

0
exp

2PI u du π∞
= − =∫   

The Error Function: ( ) ( )duuxerf
x

∫ −=
0

2exp2
π

 

Laplace function: ( ) duux
x

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Φ

0

2

2
exp

2
1
π

 

 
Appendices  

 
Appendix A 
 
The probability density function of the LG4 

distribution (PDFLG4) is: 

( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−
−= 2

21

2
lnlnlnln

exp
p

ppp
pp

xxxx
xCxf

ζ
, (A1) 

where pC  is the normalizing factor. The function is 
normalized if the value of the integral over all possible 

values of x  is unity, i.e. ( )∫
∞

=
0

1dxxf p . Hence, we have 

( )( )1 2
2

0

1 1
ln ln ln ln

exp
2

p
Ap pp

p

C
Ix x x x

x dx
ζ

∞
= =

⎡ ⎤− −
⎢ ⎥−
⎢ ⎥⎣ ⎦

∫

. (A2) 

In order to obtain the normalizing factor we have to 
determine the integral 

( )( )1 2
2

ln ln ln ln
exp

2
p pind p

A
p

x x x x
I x dx

ζ

⎡ ⎤− −
⎢ ⎥= −
⎢ ⎥⎣ ⎦

∫ . (A3) 

By making the change of variables ln x t=  we have 

( ) ( ) ( ) ( )
22 2

1 2 1 21
1 2

2 1 ln ln 1
2 exp

8
p p p p p ppind

A pp
pp

p x x x x x p
I x

ζ ζ
ζ π φ

ζζ
+

⎧ ⎫ ⎛ ⎞⎡ ⎤+ − − +⎪ ⎪⎣ ⎦ ⎜ ⎟= ⎨ ⎬ ⎜ ⎟⎜ ⎟⎪ ⎪ ⎝ ⎠⎩ ⎭

 (A4) 
Then 

( ) ( ) 22
1 21

1 2

2 1 ln
2 exp

8
p p pp

A pp
p

p x x
I x

ζ
ζ π

ζ
+

⎧ ⎫⎡ ⎤+ −⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪
⎩ ⎭

.

      (A5) 
 

By using (A1), (A2) and (A5) we obtain the PDFLG4:  
 

( )

( )( )

( ) ( )[ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−
−

=
+

2

2
21

2
1

1

2
21

8
ln12

exp2

2
lnlnlnln

exp

p

ppp
p

p
p

p

ppp

p
xxp

x

xxxx
x

xf

ζ
ζ

πζ

ζ

     (A6) 
 

By using (A3) and (A4) it can be found that the mean 
value of the PDFLG4 is 
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( )

( )( )

( ) ( )
( )

1 21
2 2

0
1 2220 1 21

1 2

ln ln ln ln
exp

2 2 3
exp

22 1 ln
2 exp

8

p pp

p p
p p p p

p p pp
pp

p

x x x x
x dx

p
x xf x dx x x

p x x
x

ζ ζ

ζ
ζ π

ζ

∞
+

∞

+

⎡ ⎤− −
⎢ ⎥−
⎢ ⎥ ⎛ ⎞+⎣ ⎦ ⎜ ⎟= = =

⎜ ⎟⎧ ⎫⎡ ⎤ ⎝ ⎠+ −⎪ ⎪⎣ ⎦
⎨ ⎬
⎪ ⎪
⎩ ⎭

∫
∫

 (A7) 
and the mean value of 2x  is 

( ) ( )2 2 2
1 2

0
exp 2 2p p p pp

x x f x dx x x p ζ
∞

⎡ ⎤= = +⎣ ⎦∫ .

      (A8) 
The variance of the PDFLG4 is  

( ) ( ) ( ) ( ) ( )2 22 2 2 2 2

0 0
2p p p p p p p pp

x x x x f x dx x xx x f x dx x xσ
∞ ∞

= − = − = − + = −∫ ∫

.  (A9) 
Substituting (A7) and (A8) into (A9) we find the 

variance 

( ) ( )2 2 2
1 2 exp 2 3 exp 1p p p p px x pσ ζ ζ⎡ ⎤⎡ ⎤= + −⎣ ⎦ ⎣ ⎦

(A10) 

and the standard deviation  

( )2 2
1 2

2 3exp exp 1
2p p p p p

px xσ ζ ζ+⎛ ⎞= −⎜ ⎟
⎝ ⎠

.    (A11) 

 
Appendix B  
 
Let ( )1,2,...,ix i n=  be the value of some parameter 

of ith  particle. The geometric mean value of the values 

ix  is: 

( ) ( )
0

exp lng px x f x dx
∞⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫ .  (B1) 

By using the change of variable: xt ln=  we have 

( ) ( )[ ]2
21 1expnlexp pppg pxxxx ζ+== .

      (B2) 
 

Appendix C 
 
Let us solve the following integral: 

( )( ) ( )( )1 1 2 2
2 2

ln ln ln ln ln ln ln ln
exp exp

2 2C
x u x v x u x v

I x dxα

β γ

⎡ ⎤ ⎡ ⎤− − − −
= − −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫

   (C1) 
By making the change of variable: xt ln=  and after 

some transformations similar (but more complicated) to 
those in Appendix A we have the result: 

 
( ) ( ) ( )

( )
( )( ) ( )( )

2

1 1 2 2
1 1 2 2

2 22 2

2 2

2 1 ln ln
ln ln ln ln2 1exp

21 1 8
C

u v u v
u v u v

I

γ βα βγ
β γπ

β γβ γ
β γ

⎡ ⎤⎛ ⎞⎢ ⎥+ + +⎜ ⎟ ⎛ ⎞⎢ ⎥⎝ ⎠= − +⎜ ⎟⎢ ⎥⎜ ⎟⎛ ⎞ + ⎝ ⎠⎢ ⎥+⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

 

( ) ( ) ( )

( )
2 2 1 1 2 2

2 2

2 1 ln ln
ln

2

u v u v
x

γ βα βγ
β γ β γ
βγ β γ

⎡ ⎤+ + +⎢ ⎥+
⎢ ⎥× Φ −
⎢ ⎥+
⎢ ⎥⎣ ⎦

 (C2) 
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