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In this paper modern approach to the investigation of carriers’ concentration applicable to various semiconductor structures 
has been developed. The model has exploited transport equation with the quantum correction term included; this transport 
equation is a consequence of density matrix formalism and moment expansion of corresponding expressions. The 
achievements of this approach have been tested in the investigation of widely used semiconductor structures. The 
preliminary theoretical results have been compared with results available in the literature and previously formed knowledge 
related to this topic. 
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1. Introduction 
 
The hastened progress of semiconductor devices has 

an inevitable consequence on their growing 
miniaturization which has surpassed micron dimensions 
and tends to realize nanometer ones. Compared to the 
usual picture, a lot of aspects are expected to be changed. 
Among these expectations the most important one is the 
appearance of quantum effects in the investigated space – 
time range. As a rule of a thumb, quantum effects are 
expected to become prominent when the sample size is of 
the order of thermal de Broglie wavelength of carriers or 
shorter [3]. 

So far the treatment of this problem consisted of self-
consistent solution of one electron Schrödinger equation 
together with the Poisson’s equation. The complex 
character of this approach has inspired numerous and less 
or more successful approximations; one of them is to 
assume simple profile quantum wells (mostly triangular or 
rectangular). Having determined wave function as 
described, the concentration is obtained according to 
equilibrium Fermi-Dirac distribution, considering only two 
lowest quantum levels occupied (electric quantum limit) 
[7]. 

This approach has some serious shortcomings. Firstly, 
at room temperatures and usual unintentional doping 
levels thermal energy is of the order of energy levels’ 
distinction, so the ignorance of the higher levels 
contribution becomes questionable. Secondly, in the 
vicinity of strong barriers (and these are the regions of 
special interest) the conditions are far from those which 
recommend the use of Fermi-Dirac equilibrium 
distribution. Last, but not least, this approach makes it 
impossible to connect the region near strong barriers 
(where quantum effects are expected) and the “bulk” 
region (far inside the sample, satisfactory described by 
means of classical theory) and describe it in a unified 

manner [5]. All these reasons have inspired an attempt to 
construct a modern approach to the investigation of 
quantum effects in semiconductor samples of nanometer 
dimensions. 

 
2. Theoretical background of the model 
 
Quantum treatment of such devices can be developed 

in two directions. First of them is quantum description of 
carriers spatial distribution (it also describes the electric 
potential in the structure and the appearance of regions 
where the transport is assumed to occur); the other is 
quantum description of transport itself and usually exploits 
the quantum theory achievements to determine collision 
rate. This paper concerned only the first aspect. 

Let us have a glance on evaluation of one electron 
wave function in the vicinity of heterojunction. Very often, 
“by hand” imposed boundary conditions demand that 
wave function at the barrier becomes equal to zero. In 
spite of the fact that the electric potential can’t have any 
infinite discontinuity, one of the samples is assumed to be 
a barrier of infinite height. This is considered to be a 
quantum correction, as far as it has no classical 
counterpart. Quantum effects are therefore expected to be 
more prominent near strong barriers. This paper is an 
attempt to develop theoretical approach which will 
confirm these observations. 

If quantum effects were neglected, Poisson’s equation 
would remain the only one to be solved. If the total current 
is equal to zero (drift and diffusion components are 
assumed to cancel each other under equilibrium 
conditions) in stationary case, carriers distribution is 
described by the following classical equation (obtained by 
taking the moments of transport equation) [1, 3]: 
 



Novel approach to the investigation of carriers’concentration in various semiconductor structures 
 

1419

0=⋅+⋅⋅
dx
dUn
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dnTk ,      ( ) ( )xVexU ⋅−= ,  1(a) 
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dVn

dx
dnt ,      ( )

( )
t

xV
enxn Φ⋅= 0 . (1b) 

 
For the sake of simplicity one dimensional problem is 

considered, V(x) and Φt denote electrostatic and thermal 
potential respectively. The obtained result (1b) is usually 
explained as a consequence of the fact that carriers obey 
Maxwell-Boltzman statistics.  

If quantum effects were included, it should be done 
obeying the principles of quantum statistics. According to 
the widely accepted quantum mechanical procedure, the 
equation of motion of density matrix is written [1]. After 
ensemble averaging the moment equations system is 
constructed. Assuming diagonal representation of density 
matrix operator and giving physical meaning to 
corresponding moments, the final system of equations, 
describing the most general quantum transport, is obtained 
[2]. The entire system will not be written here, except the 
equation which has drawn our attention [3]: 
 

( ) 0=+⋅+⋅⋅ QU
dx
dn

dx
dnTk ,              (2a) 

 

( ) 2

2

*

2 1
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nd
nm

xQ ⋅⋅−=
h

.                 (2b) 

 
The obtained expression Q(x) denotes quantum 

correction (to the electrostatic potential energy). Its shape 
suggests its strong influence in the region where the 
concentration abruptly changes (as usually happens in 
semiconductor samples) [2]. The equation (2a) also 
remiinds very much of the equation (1a) and can be 
rewritten as: 
 

( ) ( ){ } 0=+⋅−⋅Φ xqxV
dx
dn

dx
dnt , ( ) ( )xqexQ ⋅−= ,   (3a) 

 

( ) 2

2

*

2 1
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nd
nem
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⋅

=
h

.               (3b) 

 
The integration of equation (3a) is straightforward. Its 

shape reminds very much of Boltzman distribution, 
although it has nothing to do with it: 

 

( )
( ) ( ){ }

t
xqxV

enxn Φ
+

⋅= 0 .                 (4) 
 

Parameter n0 is governed by boundary conditions and 
the nature of investigated device. The shape of equation 
(4) explicitely exibits the influence of “quantum potential 
q(x)”. The equations (3a) and (3b) are coupled; therefore it 

is useful to put aside q(x). After simple, but tedious 
procedure, a nonlinear second order differential equation 
with respect to carriers’ concentration n(x) is obtained [4]: 

( ) ( ) ( ) 0
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2
1
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*2

2
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⎬
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The electrostatic potential V(x), which obeys Poisson's 

equation, strongly governes the solution of equation (5), 
but that's beyond the scope of our investigation. Our goal 
is to consider simple shapes of V(x) and thus reproduce the 
most frequent practical problems in order to investigate 
what the implications of equation (5) suggest [6]. 
 

3. Testing of the model in some interesting  
     problems 
 
I) One of first interesting questions is to find the 

solutions suggested by equation (5) in the absence of 
external voltage V(x). Therefore, unintentionally p-doped 
semiconductor sample of large dimensions (far exceeding 
tens of nanometers), which abruptly ends in the plane x=0, 
is considered: 

 

( ) ( ) 0ln4
2
1

0
2

*2

2
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=⋅⋅Φ⋅

⋅
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⎠
⎞

⎜
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There are also two boundary conditions to be satisfied 

in order to specify the problem: 

( ) 00 =n ,      ( ) t
F

eNnxn A
x

Φ
Φ−

+∞→
⋅==

2

0lim .   (7) 

 
The first one is imposed “by hand” and denotes the 

border of the sample (infinite barrier height). The second 
one represents the fact that far from this border 
concentration reduces to its “bulk” value; the solution of 
(6) can be obtained as follows: 
 

( )xz
dx
dn

= ,      ( ) ( )xnnxn ~
0 ⋅=           (8) 

 
what gives: 

 

0~ln~8
~
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New parameter with the dimension of length should 

be introduced: 
 

tem Φ⋅⋅
= *

2

8
hλ .                         (10) 
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This parameter is intended to show how deep quantum 
effects (edge effects) penetrate into “bulk”. The equation 
(9) becomes: 
 

0~ln
~

~
1

~ 2 =⋅−⋅− nnz
nnd

dz
λ

.              (11) 

 
Its solution is known in the literature: 
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If the modified boundary conditions (8): 
 

( ) 1~lim =
+∞→x

xn    and    ( ) 01 =z               (13) 

 
are imposed, the equation (12) becomes: 
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This equation must be integrated numerically; but for 

our purpose it's quite satisfactory to introduce the 
approximation: 
 

( ) ( ) nnnnnn ~~17.0~~ln~1~ 2 ⋅−≈−⋅+⋅ .          (16) 
 

Now, the equation (15) is easily integrated: 
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or: 
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The parameter λ is given in Table 1 for several 
various semiconductor materials and two typical values of 
temperature (T = 300 K, T = 77 K). The distinction 
between various semiconductor materials is introduced 
through their effective masses. 
 

Table 1. Values of λ-parameter for various semiconductor 
materials and typical temperatures. 

 
Material 
m*/m0 

Si 
0.41/0.29 

GaN 
0.20 

GaAs 
0.067 

InAs 
0.022 

 
T=300 K

λ=0.946 nm
λ=1.130 nm

 
λ=1.354 nm 

 

 
λ=2.35nm

 

 
λ=4.093nm

 
 

T=77 K 
λ=1.830 nm
λ=2.23 nm 

 
λ=2.67 nm 

 

 
λ=4.54nm

 

 
λ=8.080nm

 
 

Without quantum correction in equation (5) no 
boundary condition can be imposed. The λ-parameter 
explicitely shows the depth of penetration of quantum 
(edge) effects into “bulk”. Also the hierarchy among 
various semiconductor materials with respect to quantum 
effects is restored (Fig. 1. – at least in Si, more in GaN, 
even more in GaAs and most in InAs). The smaller 
effective mass, the bigger value of λ-parameter, so 
quantum effects penetrate deeper into “bulk”. The same 
holds for temperature - lower value causes the increase of 
λ-parameter and more expressed quantum effects.  
 

 
 

Fig. 1. The evaluated profile of carriers’ concentration for 
various semiconductors. 

 
It is possible to determine “semi-penetration length”, 

i. e. distance from the border where the concentration is 
half of that in the “bulk”. It is clear from Table 1 that all 
these lengths are of the order on nm, i. e. for samples of 
corresponding dimensions quantum-mechanical treatment 
becomes necessary. 

II) The other case to be discussed here should give 
more realistic character to the structure described in the 
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previous section. It will be investigated what kind of 
solution is suggested by this model in the presence of 
external voltage. If the border (plane x=0) is subject to 
positive voltage bias V0 (referent level is far in the “bulk”), 
the following spatial dependence of electrostatic potential 
in the structure is expected [7]: 

( ) xeVxV ⋅−⋅= α
0 ,   0>α ,          (18) 

 
what, together with the starting equation, gives: 
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The goal of this paper is only to discuss asymptotic 

behaviour of the solution of equation (19a), whose 
following form is assumed: 
 

( ) xeKxn ⋅−⋅+= β1~ , 0>β .              (20) 
 
Together with the substitutions: 
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= *

2
2

8
hλ , 00
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the equation (19a) becomes: 
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Combining expressions (18), (20) and (22) and 

considering only first order terms containing e-αx, e-βx 
(terms containing e-2αx, e-2βx, e-(α+β)x are of higher order and 
therefore neglected) the interesting conclusion is obtained: 
 

0
22

~

22
02 ≅⋅−⋅+⋅⋅ ⋅−⋅−⋅− xxx eKe

V
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and:  

βα = ,                                   (24a) 
 

        22
0

21

~

αλ ⋅−
=

V
K .                        (24b) 

 
To include higher order terms the assumptions (18) 

and (20) are not sufficient and they have to be modified. 
But the mentioned assumptions permit some qualitative 
conclusions. 
 

1. 12 22 >⋅αλ  ⇒ 
2

1
⋅

>
λ

α ⇒    2⋅
−

⋅− < λα
x

x ee  

 
The potential decreases faster than the penetration of 

quantum effects occurs and therefore K<0. Therefore is 
ñ(x) smaller than its asymptotic value in the whole x≥0 
range (Fig. 2. curve a). 

2. 12 22 <⋅αλ ⇒ 
2

1
⋅

<
λ

α ⇒      2⋅
−

⋅− > λα
x

x ee ,  

The potential decreases slowlier than the penetration 
of quantum effects occurs and K>0; far away from the 
border concentration decreases to unity (ñ(x)→1+). It 
actually means that the region exists where the 
concentration exceeds its “bulk” value. Due to the 
boundary condition ñ(0)=0, concentration has a shape 
shown in Fig. 2. curve b; i. e. in the vicinity of the border 
conduction channel with the considerably increased 
carriers concentration is formed, as expected from 
theoretical and practical knowledge concerning unipolar 
devices [5]. 
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Fig. 2. Normalized concentration for V0>0 external bias.  
A qualitative picture. 

 
It is worth mentioning that the channel creation is not 

exclusively governed by the magnitude of applied voltage, 
but also depends on α-parameter. Therefore it is more 
accurate to conclude that the conditions of channel 
creation mostly depend on quantum well profile, i. e. on 
the quasi-electric field strength [6]. 

III) In this section the described aproach is applied to 
the problem of carriers contained in a quantum well of 
finite width (2L) with infinite barrier heights and zero 
potential energy inside. The equation to be solved inside 
the quantum well is the same as in problem I, but with 
different boundary conditions (the concentration n(x) is an 
even function with respect to the center of the well, so 
only the region x≥0 will be considered): 
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One of the interesting features of equation (25a) is 

that it can be normalized by an arbitrary value n0 and 
modified into dimensionless form: 
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( ) ( )xnnxn ~
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with modified boundary conditions too: 
 

( ) 0~ =Ln , 0
~

0
=

dx
nd

.                      (27) 

 
The boundary condition (26b) is expected because it 

enables the evaluation for an arbitrary amount of carriers 
in the quantum well. Together with the mentioned ones it 
is suitable to introduce an additional boundary condition 
(due to a special constraint, as explained later): 
 

( ) 10~ <= pn .                          (28) 
 
The solution of (26a) is analytical, as mentioned before: 
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what together with (27) gives: 
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under the expectation ñ(x)≤p, ∀x. The equation (30) can be 
rewritten as follows: 
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If our goal is to avoid numerical integration of (31), in 

the region 0.5<p<1, the following approximation works: 
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The integration of the equation (32), together with the 
boundary condition (27), is straightforward: 
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The previously mentioned constraint with respect to p 
is the equation (28) and is used to extract p: 
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Obviously p<1 is satisfied; the other condition p>0.5 
implies: 
 

λλ 25.323.2 =≥L , λ25.62 ≥L .        (35) 
 

 
 

 
Fig. 3. Carriers' concentration profile in quantum well with 
infinite barrier height for various semiconductor materials. 

 
 
i.e. the minimal  width of quantum well surely exists, if 
our goal is to safely use approximation (32). Numerical 
results are exposed in Table 2. For smaller values of 
quantum well width, the integration of equation (31) must 
be performed numerically. 
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Table 2. Minimal quantum well width for various  
semiconductor materials. 

 
Material Si GaN GaAs InAs 
(2L)min 6.15 nm 8.80 nm 15.28 nm 26.60 nm 

 
 
In Fig. 3 the concentration profiles in one-dimensional 

quantum well, for various semiconducor materials, at 
room temperature T=300 K, are shown. Only if InAs 
quantum well of investigated width is considered, the 
approximation (32) must be slightly improved (extremely 
strong quantum effects). 

 
4. Conclusions 
 
The suggested approach was successful in fulfilling 

the goals described in Introduction (natural connection 
between different sections of semiconductor sample, as 
well as the application of tools of quantum statistical 
physics). The successful estimation how deep quantum 
effects penetrate into semiconductor sample has also been 
performed (several tens of nm), together with the 
established hierarchy among various materials with respect 
to the outstanding appearence of quantum effects (at least 
in Si, more in GaN, even more in GaAs, most in InAs). It 
was also confirmed that quantum effects were stronger at 
lower temperatures than at higher ones (approximately 
twice stronger at T=77 K than at T=300 K). It is also 
interesting to pay attention to the former statement that 
quantum effects become prominent if the sample 
dimensions are of the order of de Broglie thermal length 
λD [3]. The thermal de Broglie length is approximately ten 
times bigger than λ (penetration length introduced in this 
paper), what very well coincides with our estimation 
(2L)min≈6.5λ. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Described approach is of great theoretical 
significance. The expression (4) is very similar to the 
classical one, and the only difference is expressed by a 
term generating quantum correction. The equation (5) may 
be solved together with the Poisson's one in a self-
consistent procedure, where the solution of problem I can 
be considered starting itteration. 
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