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Using a reaction-diffusion type equations for the thermal transfer, the dynamics of the nano-particle/liquid interface is analyzed. It 
results, by a finite differences method, thermal breather, thermal breather pair and thermal cluster type solutions. Through 
self-organizing of the interface, the thermal transfer in the nano-fluids increases. The model was verified by means of 
experimental data too. 
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1. Introduction 
 
Nanofluid is a new kind of heat transfer medium, 

containing nanoparticles which are uniformly and stably 
distributed in a base fluid. These distributed nanoparticles 
with high thermal conductivity greatly enhance the 
thermal conductivity of the nanofluid [1-5]. Currently, the 
origin of such remarkable increases in the thermal 
conductivity of nanofluids eludes theoretical 
understanding. Keblinski et al. [1], Eastman et al.[2], 
Wang et al. [3], Xue [4] and Patel et al. [5] suggested 
various potential mechanisms for the thermal conductivity 
enhancement such as: the Brownian motion, liquid 
layering, nanoparticle clustering etc. In the present paper 
we expose an new mechanism capable of explaining the 
experimentally observed enhanced thermal conductivity of 
nanofluid. 

 
2. Fractal structure of the heat transfer 
process in nanofluids 
 
Usually, the thermal transfer in the nanoparticle/liquid 

(nP/L) interface is obtained by numerical integration of the 
thermal equations [2], [6]: 
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with adequate initial and boundary conditions. In these 
relations  is the temperature of the nanoparticle and 

liquid phases respectively,  the thermal conductivity 

coefficient, 

lT
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lρ  the density and  the specific heat. It 
results: (i) the maximum value of temperature field at a 
given moment is localised in the nP/L interface; (ii) the 
thermal transfer between the nanoparticle and fluid is 
nonlinear; (iii) the nano-particles fluid system has the self-
organizing ability, but does not explain it. The last 
conclusion is important for our model.  
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In the model, the dynamics of the (nP/L) interface will 
be described by the reaction-diffusion type equations for 
thermal transfer [6-8]: 
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where a1, a2 are the thermal diffusion coefficients and 
 the source factors.  21,cc

For a plane symmetry and through an adequate 
normalization of the parameters from (1a,b), i.e. 
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where (ω, k, T0) have the usual significance from [1-3], the 
equations (1a,b) becomes: 
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In the general case 1β , 2β  coefficients are functions of 

1φ , 2φ . In other words, the (3a,b) system is nonlinear and 
admits nonlinear solutions [9]. To these non-linear 
solutions we can associate certain physical structures. For 
example, the breathers (two-dimensional dark solitons) 
with magnetic domains, the kink with the magnetic flux 
quanta [10], etc. 

We shall solve (3a,b) equations using a finite 
differences method [11]. For α1=α2=1/3, β1=-0.2, β2=2, 

1000 ≤≤ ξ , 1000 ≤≤η ,τ =1.25; 1.5 and the initial 
and boundary gaussian conditions, the numerical solutions, 
i.e. the equal thermal “diffusion” curves, are presented in 
Figs. 1a, b. It results thermal breather. For α1=α2=1/3, 
β1=-1.8, β2=1.9, 1000 ≤≤ ξ , 1000 ≤≤η , τ =0.75; 
1.25 and the initial and boundary gaussian conditions the 
numerical solutions are presented in Figs. 2a,b. There 
results thermal breather pairs for decreased time sequences 
(see Fig. 2a) and thermal clusters for increased time 
sequences, respectively (see Fig. 2b). 
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In our opinion, and according to ref. [1], the numerical 
solutions from Figs. (1a,b) and Figs. (2a,b) are sequences 
of the heat thermal transfer in nP/L interface. Through 
self-organizing  (correlation in amplitude and phase of the 
thermal breathers – for details see [12]), one gets first 
thermal breather pairs and then the thermal clusters.  
 

 
 

Fig. 1. The solution of the system (3a,b) for α1=α2=1/3, 
β1=-0.2, β2=2,τ =1.25; 1.5 and the initial and boundary  
                            Gaussian conditions. 
 
 

 
 

Fig. 2. The solution of the system (3a,b)  for α1=α2=1/3, 
β1 = -1.8, β2 = 1.9, τ  = 0.75;  1.25  and  the  initial  and  
                     boundary Gaussian conditions. 
 

 
The self-organizing of nP/L interface is a fractal 

process since the equal thermal “diffusion” curves are of 

Koch type (the fractal dimension is - see the 
similitude in Figs. 3a-e). For other details see [12,13]. 

26.1≈D

It results that 221 ≤== βββ  is the optimal value 
of the fractaling effects, i.e of the self-organizing of the 
nP/L interface (for details see - [13]). Since from [1] 
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(τ  is the time required for heat to move in the liquid by 
the distance equal to the particle size, d is the nano-particle 
diameter, k is the thermal conductivity of the “composite 
material” (mixture nano-particle/liquid), ρ  is the density 

of the “composite material”,  is the specific heat of the 

“composite material”), and (3a,b) the parameter 
pc

β  
defines the ratio between the time required for heat to 
move in the liquid along the d distance in the absence of 
the fractaling effects (τ ) and in their presence ( fτ ), one 
gets the restriction (the stability criterion of the thermal 
transfer in nano-fluid) 0.2≤= fττδ . It results that, 
through the fractaling effects (self-organizing of the nP/L 
interface) one gets the increasing of the heat transfer into 
the nP/L interface. This restriction is verified by means of 
the experimental data [1,2]. For example: using Al2O3 
particles ≈13 nm in diameter and water under stationary 
conditions, the ratio is 3.1≈δ ; using Cu particles ≈10nm 
in diameter and water under stationary conditions, the ratio 
is 4.1≈δ . 
 

 
Fig 3. (a) The solution of the system (3a,b) for 
α1=α2=1/3, β1=-1.8, β2=1.9, τ =2 and the initial and 
boundary   Gaussian   conditions;   (b-e)   Koch   thermal  
                     curves at 1 to 4 iteration levels. 
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3. Conclusions 
 
The main conclusions of this paper are as follow: 

(i) Using a reaction-diffusion type equations for the thermal 
transfer, the dynamics of the nP/L interface is analyzed; 

(ii) Thermal breather, thermal breather pair and thermal 
cluster type solutions are obtained by means of a finite 
differences method; 

(iii) The self-organizing of the nP/L interface is a fractal 
process since the equal thermal “diffusion” curves are 
of Koch type; 

(iv) Through self-organizing, one gets the increasing of 
heat transfer in the nP/L interface by means of the heat 
time transfer variation. In such a context, a stability 
criterion for thermal transfer in nP/L interface is 
given; 

(v) The model was verified by means of experimental 
data too; 

(vi) By an extension of this self–organizing process to 
the fluid-nanoparticles system, it is possible a global 
increase of the thermal transfer in nanofluids. 
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