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On the phase coexistence of band ferromagnetism and 
singlet superconductivity 
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In this work we evaluate the conditions of the superconductivity -band ferromagnetism coexistence using a Green Zubarev 
function method for a singlet Cooper pairing system, where the ferromagnetic order appears as a consequence of 
spontaneously broken spin-rotation symmetry. In this way, we get the solutions for the Green functions and the elementary 
excitations spectrum of the interacting system. Using a spectral representation for the correlation functions, the self-
consistent equations for the order parameters are derived and their solutions at 0=T K are discussed. For this case, the 
relations between ferromagnetic and singlet pairing constants are emphasized. Finally the energy of the system in this state 
is calculated and we show that the singlet superconductivity-band ferromagnetism phase coexistence is more favorable 
energetically than the normal phase. 
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1. Introduction 
 
The possibility of coexistence of ferromagnetism and 

superconductivity (SF) was pointed out on earlier time by 
Ginzburg [1] in the case of that magnetization is less than 
termodynamic critical field and it was experimentally 
investigated [2]. The standard way to investigate SF state 
is to introduce two kinds of fermions: local f-electrons 
which could cause FM and itinerant ones susceptible to 
produce SC. This point of view was embraced in [3] and in 
the leading works [4,5] where superconducting materials 
with magnetic impurities were studied. The case of 
itinerant electrons developing both ferromagnetism and 
superconductivity was considered an intricate one until the 
occurrence of such coexistence was revealed by the 
recently discovered material as  [6,], 2UGe 2ZrZn [7] and 

[8]. Based on these experimental results, the 
theoretical studies initiated by Kharchev et. al. [9] 
produced further useful works and discussions [10, 11, 12] 
which lead to establish the main aspects of the 
phenomenon and further targets to be studied.  
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In our work we try to evaluate the conditions of the 
superconductivity-band ferromagnetism coexistence using 
a Green Zubarev function method for a singlet Cooper 
pairing system. The aim of the article is to obtain the self-
consistency equations for the order parameters and their 
solutions for  case. Finally the energy of the system 
is calculated and the phase stability is discussed. 
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2. Model Hamiltonian and the spectrum of the 
    elementary excitations 
 

We consider a single spin 
1
2

 fermions model where 

the long-range ferromagnetic order appears because of 
spontaneously broken spin-rotation symmetry. 

In order to start up, let us write down the Hamiltonian 
of our problem: 
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where  σψ  and  are fermionic annihilation and 
creation field operators with spin

+
σψ

σ . In this formula g 
(>0) is pairing coupling constant and J (>0) is Heisenberg 
ferromagnetic exchange integral and  µ  - the chemical 
potential. Expressing spin density operators in terms of 
annihilation and creation field operators 
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τ are Pauli 

matrices, and retaining only the zS  term, we get the 
model Hamiltonian of our problem in the momentum 
space: 
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Note that, in the first sum of (2) the chemical potential was 

normalized due to inclusion of the terms 
8
J

− resulted 

from the expression of the magnetic terms through 
annihilation and creation operators and, in the second sum 
of (2), only the BCS terms was considered. 

Supposing than, the interaction described by the 
model Hamiltonian (2) leads to SF coexistence, the 
corresponding averages can be expressed in terms of 
double time Green Zubarev functions: 
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where the operators appears in Heisenberg picture, { }.,.  

denotes the anticommutator and ...  means the statistical 
averages on the ground state of interacting system. 
Following the Green-Zubarev procedure we will write 
down the time evolution equations for the Green functions 
(3). Using the generic form  
 

( ) ( ) ( ) ( ){ } ( ) ( )[ ] ( ){ }',,'0,0'
'

tBHtAttiBAtt
dt

ttdG
i AB −−−=

−
θδ

 
where  denotes the commutator and, supposing that 
only non zero averages are that from (3), the time 
evolution equations are 
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where we put ∑ ↑↓−

=∆
k

kk aag for the energy gap, 

( ) ( ) ( )∑ ↑↓
+

↑↓↑↓ =
k

kk aan  for spin up and down occupation 

numbers and µεε −= kk . 
Switching to the time Fourier  transform of Green 

functions in (4), we get the algebraic system: 
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Now, one can observe that  and  can be 
determined by solving the first two equations from (5) 
while  and  can be obtained by solving the last 
two. With respect to this observation, the elementary 
excitations spectrum can be obtained from the existence 

conditions of the solutions. Therefore, this condition for 
the first two equations leads to 
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where magnetization M is defined as 

( )↓↑ −== nnSM z 2
1

2
1

 and µεε −= kk
~   with  
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JM
−= µµ . The condition for the last two equations 

leads to the same formula (6). 
The solution of system (7) can be easily written in a 

matrix form: 
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3. Self-consistency equations for the order  
     parameters 
 
In order to get the equations for the order parameters 

∆  and M , we will express the averages from (3) in terms 
of spectral intensities . Using the generic formula  αβJ
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we first compute the spectral intensities then, making use 
of the spectral representation  
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we will get the averages involved in (3). Therefore 
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Here we used the notation 2
k kE ε= + ∆ .Now if we 

put for the particles number   we have the 
following form of the equations (8)  

↓↑ += nnn
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It can be verified that the above equations leads to the 
correct solutions in the particular cases  

and  both for 

( )0, 0M = ∆ ≠

( )0, 0M ≠ ∆ = 0T =  and . 0T ≠
 
4. Results and discussion 
 
For the  case the form of the eqns. (9) is: 0=T
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where ( )xθ  is the step function.  
The eqn. (10) can be integrated using the standard 

BCS procedure and we get: 
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where Dω -Debye frequency, 
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energy and 
n
Mm 2

= -magnetization per particle. 

The eqns. (11) and (12) can be integrated without any 
restrictions regarding density of states and the limits of 
integration and, after we eliminate the chemical potential, 
µ  the result is: 
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The above relation leads to the restriction 1
8

>
∆

Jnm
, 

which consistently expresses the physics of the problem. 
 Now, we will seek for the SF coexistence by 

searching the common solution of eqns. (13) and (14): 

( gJ ,∆ ) ) and . Fig.1 shows  ( gJm ,
Fε
∆

 dependence 

from  for a few values of parameter m
F

Jn
ε8

 as it results 

from eqn. (14). It can be observed that for 3.18.0 ÷  

range of values for 
F

Jn
ε8

there are nonzero solutions for 

the order parameters. We emphasise the linear dependence 
( )m∆=∆  for small values of  [9,13]. The linear 

approximation becomes better as 

m

F

Jn
ε8

 values are 

increasing. In this case, the small magnetic field cannot 
break the singlet Cooper paired fermions so that 
superconductivity and ferromagnetism can coexist.  For 

 the magnetization goes to saturation and, as it can 
be expected, superconductivity disappears (

1→m
0→∆ ). 

This can be interpreted that strong magnetization field 
breaks the singlet Cooper pairs and  all fermions are 
magnetically aligned.  Another feature of the 
interdependence of the order parameters emphasised by 

Fig. 1 is that at a fixed value of m , 
Fε
∆

 is increasing 

with the increasing values of  
F

Jn
ε8

 . This observation 

may sustain the statement that the mechanism of the 
Cooper pairing in SF coexistence is a magnetically 
mediated interaction between fermions. 
 

 
 

Fig. 1. The dependence of 
Fε
∆

 on m  resulted from  eqn. (14). 

Table 1. The domain of values for 
Fε
∆

 and   at a fixed value 

of 

m

F

Jn
ε8

(a) and at a fixed value of gFe ρ
1

 (b). 
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Tabels (1) and (2) depict the domain of values for 
Fε
∆  and  

m  which eqn. (13) is verified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 
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It can be observed that, for a fixed value of 
F
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, the 

values of 
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∆

 and  are decreasing with decreasing 

values of pairing coupling constant 

m

g  for all fixed values 

of 
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. (table (1)). For a fixed value of g , (Table 2) 

shows a not very strong dependence of 
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 and  with 

increasing values of .  We note that there are another 
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the real solution of (13), there is a linear dependence of 
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The Ground State Energy.  The energy of the 
ground state is usually obtained by averaging the canonical 
form of Hamiltonian (2). Therefore 
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In addition, making use of the identity 
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which express the ground state energy of the interacting 
system in SF phase. 

For 0=∆  and 0=m , (16)  gives the ground state 
energy for the normal phase:  
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Now it can be easily observed that  
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therefore, in the ground state, SF phase is more favourable 
than the normal phase. The SF phase preference in the 
ground state of interacting system was also emphasised by 
a mean field approach in [13]  

 
5. Conclusions 
 
In this paper a Green functions solution for band 

ferromagnetism and singlet superconductivity coexistence 
was investigated and shown that for the ground state, there 
are nontrivial results. The range of values for the order 
parameters around  emphasises that the coexistence is 
possible for weak magnetization. This result may sustain 
the natural interpretation that the weak internal magnetic 
field does not destroy the superconductivity. Evaluating 
the energy of the ground state we show that SF 
coexistence state is more favourable that the normal state. 
Although the nature of superconducting order parameter is 
an open one, we show that an s-wave Cooper pairing is 
qualitatively viable. 

310−

As a result of the general part of the theory, the 
elementary excitations spectrum and self-consistency 
equations for finite temperatures were obtained. Note that, 
for  case, the self-consistency equations for the 
order parameters was established by eliminating the 
chemical potential using the equation for the particle 
number. We appreciate this procedure is correct because 
there is no approximation involved, as in the case of 
putting 

0=T

Fε  instead µ . 
Finally we must say that we choose the Green 

Zubarev functions theoretical model because of it’s 
possibility to develops calculus in higher order of 
perturbation theory, opposite with a mean field approach  
which does not allow further corrections of the results. A 
second order decoupling of the time evolution Green 
functions for our system will be the object of a further 
work.  
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