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This paper reviews the general features of magnetic resonance spectra specific to the amorphous chalcogenide materials. 
We discuss the dominant interactions that influence the local bonding structure. We show how to parameterize the 
interactions and simulate their spectra in frequency space. In contrast to the crystalline phase, the amorphous material 
exhibits variations in the local bonding structure. We discuss how to account for these variations and compare the resulting 
frequency space spectra with their crystalline counterparts.  
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1. Introduction 
  
Recent technological applications of some 

chalcogenide materials, compounds containing a group VI 
atom, have prompted studies of the local atomic structure 
of the amorphous phase. In the case of Ge2Sb2Te5, 
metastability in the local bonding structure is responsible 
for its usefulness as a phase-change memory material     
[1, 2]. There is no consensus on the exact phase-change 
mechanism, which is partly due to the inadequacy of 
standard scattering techniques to probe the structure of the 
amorphous phase. Magnetic resonance methods are well 
suited to study local structural order. In this technique, 
structural information is encoded as an oscillating voltage 
caused by the nuclear spin. 

Magnetic resonance methods are particularly fruitful 
when studying the Sb2Te3 – GeTe tie line, which includes 
Ge2Sb2Te5. The 121Sb and 125Te nuclei have gyromagnetic 
ratios similar to 13C and therefore can be studied on most 
commercially available magnetic resonance set-ups. In 
principle, local order can be studied as a function of the 
stoichiometry and phase of the material. 

Magnetic resonance, methods have long been used to 
probe the local bonding structure of disordered materials 
(see for instance, refs. 3 and 4 and references therein). In 
solid-state magnetic resonance, the wealth of local 
structural information results from the functional forms of 
the total nuclear Hamiltonian. Interactions have an 
inherent spatial dependence and these dependences 
sometimes give rise to the unusual spectra in frequency 
space. In general, the frequency spectrum for each 
interaction can be calculated and used as a fingerprint 
when interpreting the experimental data. In the easiest 
case, there is a dominant interaction and the resulting 
spectrum can be explained in terms of the parameters that 
describe the interaction provided that the spectral features 
are well resolved. When the various interaction strengths 
are comparable, the spectrum consists of a superposition 

of each fingerprint, and the interpretation must include all 
relevant parameters.  

 In the remainder of the paper, we describe the 
magnetic resonance data typically observed in crystalline 
and amorphous chalcogenides. We will discuss the role of 
disorder and the interactions specific to these systems. We 
demonstrate the consequences of varying the parameters 
with spectral simulations, for which we present a general 
calculation scheme.     

 
2. Amorphous materials and magnetic  
    resonance spectra 
 
In general, magnetic resonance methods valid for 

crystalline lattices also apply to amorphous systems. This 
fact results primarily from the invariance of chemical bond 
lengths. Nearest neighbor distances are generally 
preserved in the amorphous phase [5]. Therefore, the 
magnitude of the nearest neighbor interactions, such as the 
inter-nuclear dipole-dipole coupling, will be 
approximately invariant. Bond angles are less well 
defined, and this degree of freedom allows for distortions 
from those that occur in the crystal lattice. These 
distortions affect interactions that have dependences on the 
direction of the applied magnetic field with respect to the 
interaction’s principle components, such as the chemical 
shift and quadrupole interactions.    

What causes the major differences between the 
spectra in the crystalline and amorphous phases? The 
answer should depend on the degree of disorder occurring 
in the local structural order. In crystalline lattices, those 
exhibiting long-range order, there exists a well-defined set 
of translation vectors to go from site to site. There is an 
inescapable amount of disorder, due to thermodynamics, 
but in a “good” crystal, it is insufficient to affect the bulk 
properties of the material [5]. The crystalline lattice is also 
“rigid” in the sense that bonding requirements for each 
atom are satisfied by an underlying periodic lattice. Once 
this rigidity is relaxed, the lattice can accommodate 
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structural changes manifested as strained bonds and bond 
angle variations. The lattice begins to loose its long-range 
order, but short-range (nearest-neighbor) structure similar 
to the crystalline phase still exists.  This property is vital to 
a good glass former, such as the chalcogen compounds. 
However, more rigid systems, such as a-Si:H, exhibit 
similar features. A simplified picture of the amorphous 
phase might consist of a collection of randomly oriented 
sites that have nearest neighbor configurations similar to 
the crystalline phase. Such a system would exhibit similar 
resonance spectra, since each local unit has the same 
structure. However, introducing strained bonds and 
varying bond angles will produce departures from the 
unique building blocks. Then, the local structured unit is 
preserved, only on average and this distribution of local 
environments produces a distribution of interactions. 
Consequently, the resonance spectrum in the glassy system 
becomes a superposition of spectra that reflects the 
distribution in structural parameters.  

Mathematically, the superposition idea has a simple 
representation. In general terms, the superposition of a 
function describing the resonance intensity that depends 
on frequency, S(ν), (intensity could refer to absorption, 
induced voltage etc.) can be written: 
 

∑∝
is

iiii svPsvSvS );();()( ,        (1) 

 

where is understood to be the frequency 
response for a particular set of parameters, s

);( ii svS
i. The function 

represents a distribution function accounting for 

the variations in the parameters. is commonly 
assumed to be a Gaussian function characterized by the 
average, s

);( ii svP
);( ii svP

ave, and full width at half maximum, σFWHM  [3] . 
For crystalline systems, will approach a delta 
function to reflect the well-defined local unit. When 
approaching the glassy phase, σ

);( ii svP

FWHM  increases as the 
lattice accommodates larger structural distortions. One 
immediate consequence of a non-zero σFWHM ,  is that the 
overlapping spectra tend to smear features that could be 
used to deduce structural parameters. This effect is 
demonstrated in Fig. 1, which contrasts the calculated 
nuclear magnetic resonance (NMR) spectrum in frequency 
space for a single and a distribution of quadrupole 
coupling constants. Details of how to generate will 
be discussed in a later section. For the present discussion, 
the parameters have been choosen to represent a typical 
NMR data set resulting from a “weak” quadrupole 
interaction. The operating frequency, set by the magnetic 
field strength, has been suppressed so that spectral center 
occurs at 0 MHz. For a single set of parameters, s

)(vS

o, the 
spectrum contains well-defined features as shown in Fig. 
1a. The spectrum in Fig. 1b results when the coupling 
constants are distributed about so. Here we have assumed 

 to be a Gaussian distribution with s);( ii svP ave = so and 

σFWHM  = 30% so.     
 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S(
v)

(A
rb

. U
ni

ts
)

Frequency (MHz)

 
a 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
(v

)
(A

rb
. U

ni
ts

)

Frequency (MHz)

 
b 

 
Fig. 1. Frequency space NMR spectra for nuclear        
spin = 3/2. For both plots, vL = 100 MHz.  See text for 
parameter definitions. a) Simulation with vq = 0.166% of 
vL , η = 0.  b)  Simulation  for  a  distribution  of  vq   with 
                    save = vq , σFWHM = 30% of vq , η = 0. 

 
Increasing σFWHM  essentially amounts to a loss of 

information. While the divergences at ± 0.5 MHz seem 
adequately resolved, the shoulders at ± 1.0 MHz have been 
smoothed. In experimental spectra, both features may be 
difficult to measure accurately if the signal is small.  

Parameter distributions are also observed in the pure 
nuclear quadrupole resonance (NQR) experiment. Fig. 2 
shows NQR data for the As2Se3 glass [6]. A Gaussian 
distribution of quadrupole coupling constants with               
save= 57.9 MHz, σFWHM  = 2.9 MHz is needed to describe 
data. In the crystalline phase, there are two inequivalent 
arsenic sites giving rise to two NQR frequencies [7]. These 
transitions at 56.07 and 60.25 MHz are also depicted in 
Fig. 2. 
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Fig. 2. Solid Circles represent NQR experimental spectra 
in frequency space for amorphous As2Se3. The data are 
fit with a Gaussian distribution of vq with save = 57.9 
MHz, σFWHM = 2.86 MHz. For reference, the NQR 
frequencies of the two arsenic sites occurring in 
crystalline  As2Se3   are   shown  below  the  experimental 
                                             data.  

    
 

3. Spectral simulations 
  
Magnetic resonance simulations start with the 

Hamiltonian for the nuclear spin system, which determines 
the frequency spectrum, or, in the time domain, the time 
evolution of the spin states. The calculation consists of 
solving the eigenvalue problem with a particular 
Hamiltonian matrix and basis set. Once the eigen-energies 
are known, various manipulations of the Hamiltonian, 
determined by the pulse sequence used in the magnetic 
resonance experiment, can be used to probe the transitions 
between eigen-energies. Reference 8 provides the 
mathematical formalism used for making such 
computations. Many excellent computational programs 
also exist in the NMR literature [9-13]. Those listed in 
refs. 9-13 are designed to allow the user great flexibility in 
designing and simulating magnetic resonance experiments.   

The simulation procedure outlined here represents the 
most basic, brute force approach to spectral simulation. In 
the chalcogenide glasses, there will be a Zeeman HL, a 
quadrupole, Hq, and chemical shift, HCS, interaction. 
Therefore the total Hamiltonian is written as: 
 

),,(),,( ϕφθϕφθ LCSqT HHHH ++= ,       (2) 
 
where θ, φ, and ϕ  represent the Euler angles with respect 
to the Hq coordinate system.  The forms for Hq and        
HCS +  HL  are given in eqs. 5 and 7, respectively. In the 
pure NQR experiment, the magnetic field terms of eq. 2 
are set equal to 0. In general, the set of principle axes for 
Hq does not correspond with the laboratory coordinate 
system. But because the HCS and HL have simpler operator 
forms, we have chosen to write HCS and HL in terms of the 
Hq coordinate system. 

For the working basis of spin states, we choose the set 
of states labeled by the z-component (mz) of spin angular 
momentum. Then, an orientation {θ, φ, ϕ} and set of 
Hamiltonian parameters is chosen. The Hamiltonian is 
diagonalized to give the eigenstates and corresponding 
eigen-energies. For both NQR and NMR, the transitions 
are probed using a single radio frequency pulse oriented in 
the x-direction of the laboratory frame, Hp. The transition 
intensity is therefore related to the transition probability: 
 

 
2

),,( iHfIntensity p ϕφθ∝ , (3) 

 
where i and f  represent the initial and final spin 
states of the diagonalized system.  

 Many of the chalcogenide materials are not 
available as single crystals. It is therefore necessary to 
study the material in powdered form, which can fit easily 
into test tubes and sample chambers. Crystallites in the 
powder can have any {θ, φ, ϕ}, and the transitions for each 
set must be computed. The resulting array of transition 
frequencies and intensities constitutes the “powder 
pattern”. For a discussion of various methods of powder 
averaging, the reader is referred to ref. 14. The most basic 
powder averaging scheme is to generate a large, random 
set of {θ, φ, ϕ} and compute the weighted transitions (to 
account for the probability of selecting that particular 
orientation) for each resulting Hamiltonian. This method 
neglects any of the Hamiltonian symmetries that may 
facilitate faster computations [14]. 

 
 
4. Interactions and sample spectra 
 
There are several detailed treatments of the spectra 

resulting from the quadrupole and chemical shift 
Hamiltonians [3, 15-17]. In the present work, we present a 
brief overview of the quadrupole and chemical shift 
Hamiltonians and how they influence the interpretation of 
magnetic resonance spectra. An understanding of these 
basic interactions is discussed with an emphasis on the 
chalcogenide glasses. We demonstrate the relationship 
between the Hamiltonian parameters and the measured 
frequency spectra for a few simple cases.  

 
a.) The Quadrupole Interaction 
 
Chalcogenide compounds usually contain atoms 

whose nuclear spin, I, is greater than ½ (As2S3, Sb2Te3, 
etc.) Nuclei satisfying this condition have non-spherical 
nuclear charge, and these departures from spherical 
symmetry produce a nuclear quadrupole moment, (eQ). 
This quantity will couple to any electric field gradient 
imposed by the surrounding electronic cloud. In general, 
the electric field gradient, is defined by a 3x3 tensor that 
represents the spatial variation in the electrostatic potential 
at the nucleus. When the field gradient is only due to 
charges external to the nucleus, the tensor is symmetric 
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and traceless, which reduces the number of independent 
parameters from nine to five [18]. It is then customary to 
represent the tensor in a set of principal axes. In this form 
the tensor has two independent components. The resulting 
interaction, which is a tensor-scalar product between the 
electric field gradient and eQ, has two adjustable 
parameters, the quadrupole coupling constant, vq, and the 
asymmetry parameter, η. The former is a measure of the 
interaction strength, while the latter is a measure of the 
departure of the electric field gradient from axial 
symmetry:  
 

)12(4
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−
=

IIh
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q ;         (4a) 
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where h is Planck’s constant, e is the charge of an electron, 

 are the non vanishing electric field 
gradient components, and v

iiii xxVV ∂∂∂= /2

q is expressed in Hertz. 
Because Vxx + Vyy + Vzz = 0, in equation 4b, 0 ≤ η ≤ 1, 
where η = 0 represents the axially symmetric case. 
Perfectly cubic and perfectly tetrahedrally coordinated 
nuclear sites are examples where the bonding symmetry 
produces a vanishing electric field gradient. The full 
quadrupole Hamiltonian (in Hertz) used in spectral 
simulations can be expressed as [18]: 
 

)]()3[( 2222
yxzqq IIIIvH −+−= η ,      (5) 

 
where Ii are the dimensionless spin operators. 
Diagonalization of eq. 5 is trivial in the case of axial 
symmetry; the eigenstates are the set of mz spin states. 
Since the operator Iz

2 is degenerate in mz, the pure NQR 
experiment contains I – 1/2 transitions for half-integer 
nuclei, irrespective of orientation. When η ≠ 0, the 
degeneracy is lifted since the eigenstates become mixtures 
of the mz basis set. Therefore the measured resonance 
shifts in frequency. These qualitative features are shown in 
Fig. 3, which represents the pure NQR experiment for the 
axially symmetric and η = 1, I = 3/2 systems. The 
spectrum is computed with vq = 10.04 MHz, which is 
representative of the coupling constant in crystalline 
As2Se3. The otherwise delta functions at ~ 60 MHz and    
~ 69.5 MHz have been broadened to ~ 100 kHz FWHM, 
which is typically measured in crystalline chalcogenides. 
Usually, in the pure NQR experiment, the dipolar 
interactions are much smaller than the measured line 
width. Therefore it is the distributions of vq and η, that 
produce a superposition of transitions, which account for 
the majority of the spectral breadth.  
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[3]. The general features are demonstrated in Fig. 4, which 
shows a I = 3/2 powder pattern for vL = 100 MHz, vq = 2% 
of vL. When compared to Fig. 1a, we see that shoulders 
now cover ± 6 MHz. The central transition has broadened 
into a set of divergences, which are not symmetrically 
centered about the origin.  
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Fig. 4. Low field NMR frequency spectra for the I = 3/2 
system where vL = 100 MHz and vq = 2% of vL. The 
spectra   have   been   runcated  at  ± 8  MHz.  a)  η = 0 ,  
                                         b) η = 1.  

 
b.) Magnetic shift interactions 
 
Changes in nuclear resonance due to electronic effects 

have been well known and studied since the 1950’s [19]. 
In semiconductors, where the conductivities are small, the 
so-called chemical shift results from magnetically induced 
electronic currents in the core states. The currents produce 
their own magnetic fields at the nuclear site that compete 
with the applied field. Since the effect increases for states 
with increasing angular momentum, heavier nuclei 
experience greater chemical shifts.  

The same tensor mathematics used in the quadrupole 
case can describe the chemical shift. The tensor does not, 
in general, display the same symmetries as that of the 
quadrupole interaction. When transformed to a set of 
principle axes, the tensor can be written as the sum of a 
diagonal and off-diagonal matrix [8]. Three adjustable 
parameters are needed to completely specify the 

interaction. The diagonal matrix requires one parameter, 
which is a measure of the overall isotropic shift in 
magnetic field. For the quadruple case, this parameter is 0 
due to the requirement that the tensor be traceless. The off 
diagonal matrix requires two parameters: one for scaling 
the interaction strength and one specifying the degree of 
asymmetry.   

The chemical shift can be thought of as an arbitrarily 
oriented applied field: 

a) η = 0  
  ][ yyxxzzLCS IIIvH σσσ ++= , (6) 

 
where σi is a dimensionless number that represents the 
field contribution along the ith direction. Assuming the 
applied field is along the z-direction, the total applied field 
Hamiltonian can be written as [3]: 
  

])1[( yyxxzzLCsLTL IIIvHHH σσσ −−−=+= .
     (7) 

 
The chemical shift does not influence the NQR 

spectra, but it will introduce its own powder pattern in the 
NMR experiment. If no other interactions are present, the 
chemical shift powder patterns will have the form shown 
in Fig 5. Values of σi, determine the positions of shoulders 
and divergences as indicated in the plot. Perhaps one of 
most easily identifiable effects is the overall shift in the 
spectral center of gravity. This so-called isotropic shift is 
given by [8]: 

b) η = 1 

 

3
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Fig. 5. NMR frequency-space powder pattern for the 
chemical shift. vL = 100 MHz, σz = -1.4×10-3,  σx = -5 × 
10-4, σy = 10-3.  Values of σi determine the positions of 
the   shoulders    and      the   divergence,   as    indicated. 
                 viso = 96 MHz shift to higher frequencies.  

 
In the example, we have chosen σz = -1.4 × 10-3,               

σx = -5 × 10-4, σy = -10-3, which gives viso = 96 kHz. Shifts 
this large have been observed for 125Te (I = ½) in 

σx σz

viso
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crystalline Sb2Te3. Fig. 6 shows the measured spectra 
along with a simulation where σz = σy = 0.7 × 10-3,        
σ

  
x = 1.8 × 10-3, vL = 126.311 MHz. Weaker, unresolved 

dipolar interactions are accounted for by convoluting the 
spectrum with a Gaussian with σFWHM = 40 kHz 3.  
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Fig. 6. Solid squares represent the experimental 
frequency-space NMR spectrum for 125Te in crystalline 
Sb2Te3 where vL = 126.311 MHz. The solid line is a fit 
based on the chemical shift interaction with σz = σy = 0.7  
                           × 10-3, σx = 1.8 × 10-3. 

 
In light of the recent technological interests in 

tellurium containing systems, i.e. Sb2Te3, Bi2Te3, and 
various compositions in the GeSbTe system, 125Te NMR 
has great potential for structure measurements. 125Te lacks 
a quadrupole moment and therefore the spectrum is 
simpler to interpret than for the antimony nuclei. 
Chemically inequivalent tellurium sites could be measured 
if the different shifts are adequately resolved. Future 125Te 
NMR studies may therefore incorporate high-resolution 
techniques, such as magic angle spinning methods, to 
reduce the spectral breadth in hopes of distinguishing 
nonequivalent tellurium lattice sites and nearest neighbors.  

  
 
c.) Combined quadrupole and magnetic shift  
      interactions: example NMR spectra 
 
Interpreting the data becomes increasingly difficult 

when more than one interaction contributes to the 
spectrum. When studying heavier quadrupolar nuclei, both 
interactions will contribute to the NMR spectrum and up 
to five parameters are needed to adequately explain the 
data. Uncoupling the contributions may be impossible if 
the spectrum contains no features characteristic to the 
interaction. To circumvent this problem it is common 
practice to obtain spectra under experimental conditions 
that accentuate certain interactions. NQR data are often 
coupled with NMR data to reduce the unknowns in the 
simulation scheme. 

For adequately resolved satellite transitions (shoulders 
and divergences), determining the quadrupole parameters 
is straightforward. These features are relatively less 
sensitive to the chemical shift. Experimental sensitivity 

may limit the full line shape measurement to the more 
intense central region, especially in cases where vq is large. 
The problem is well demonstrated in Fig. 7, which shows 
the central transition at room temperature for 121Sb (I=5/2) 
NMR at vL = 95.75 MHz (400 MHz with respect to the 
NMR transition of hydrogen). The satellite transitions 
have no defining features, within experimental uncertainty, 
and are therefore not shown.  The central transition’s 
shape is very similar to that shown in Figs. 4b and 6, 
which suggests that the line shape can be adequately fit 
with either two quadrupole or three chemical shift 
parameters. A unique fit is therefore not possible using this 
single spectrum. Extracting the quadrupole parameters 
requires additional spectra. Estimates of vq and η based on 
the spectral breadth can be used as starting points for an 
NQR experiment. Alternatively, variations in line shape 
with magnetic field could provide additional constraints on 
the chemical shift and quadrupole parameters.  
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Fig. 7. Solid squares represent the experimental 
frequency - space  NMR  spectrum for 121Sb in crystalline  
                       Sb2Te3 where vL = 95.75 MHz.  

 
 

5. Summary 
 
The local bonding structure of disordered materials 

can be studied in detail using magnetic resonance 
methods. We have discussed general attributes of 
frequency spectra for both pure nuclear quadrupole and 
nuclear magnetic resonance in terms of parameters 
appearing in the total nuclear Hamiltonian. In 
chalcogenide glasses, the quadrupole and chemical shift 
interactions dominate. Frequency spectra can be fitted with 
calculated powder patterns for which we presented a 
general calculation scheme. We demonstrated some 
experimental challenges; such as the ambiguity in spectral 
fitting that arises when spectral features are unresolved. 
For increasingly complex systems, combining resonance 
data from the pure quadrupole and field dependent 
experiments will be critical in determining unique 
parameter sets. 
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