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An analytic theory is developed for conduction in electron glasses that includes all the important correlations arising from 
many-body effects. The theory yields the same functional dependence of the conductance on temperature as the widely 
used Efros-Shklovskii (ES) theory where many body are neglected. The degree to which the present theory differs 
quantitatively from ES cannot be at present evaluated analytically. 
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1. Introduction 
 
In disordered electronic systems on the localized side 

of the Anderson transition [1] the basic transport 
mechanism consists of thermally induced transitions 
between localized electronic states. When electron-
electron interactions are negligible, the conductivity is 
described by the well known Mott law [2].  

A well established theory for transport in Anderson 
localized systems is the percolation theory [3] where one 
finds the path in which the most difficult transitions to 
traverse are as easy as possible. The difficulty of the 
transitions (constituting the bonds in percolation theory) is 
quantified by the so-called Miller-Abrahams (MA) 
resistances 
 

ρij ∝ exp(Eij/kT) exp(2rij/a)                         (1) 
 

where a is the localization radius, Eij(εi, εj) = max(|εi|,|εj|) 
when i,j are on the same side of the Fermi level and Eij(εi, 
εj) = |εi-εj| when they are on opposite sides. εk is the 
random energy on site k. The largest ρij in the least 
resistive macroscopic path is referred to as the critical or 
maximal resistance ρm. Because of the exponential 
dependence of the MA resistances on the random variables 
Eij, rij the ρm is much larger than all the other resistances in 
the current path so that the macroscopic resistivity is 
characterized by ρm. The important feature in the 
percolation method is the relative magnitude of the bond 
strengths. Since the exponential is a monotonic function of 
its argument one may more conveniently adopt the 
logarithm of (1) lnρij ≡ ξij = Eij/kT+2rij/a, as the bond 
strength.  

An alternative theory that yields the same results as 
the percolation theory is a scaling theory [4] that also 
justifies the original optimization method Mott used in his 
original derivation of the Mott law. 

These theories apply when interactions between 
electrons are negligible. When they are important (an 
electron glass, alias a Coulomb glass) they strongly affect 

physical properties.   There is much experimental evidence 
[5] that the conductivity in the electron glass behaves as 
  

σ = σo exp[-(To/T)1/2].                   (2) 
 

Such a behavior was predicted by Efros and 
Shklovskii (ES). In their theory, ES derive the interaction-
modified energy dependence of the one-particle density of 
states and use it in a percolation theory to obtain (1). ES 
has been questioned because by using a one-particle 
density of states it excludes many body effects and with it 
dynamic[6] and other [7] correlations. Here an alternative 
derivation of (1) is presented that does account for these 
effects. 
 
 

2. Theory 
 
The commonly used model for the electron glass is 

defined by its Hamiltonian 
 

H = ∑iεi ni + ∑j,i≠,j ni nj /2rij ,                           (3) 
  
where ni is the occupation number of site i and rij the 
distance between sites i and j. The occupation numbers are 
restricted to the values nk = 0,1. This makes the model 
applicable to the strong localization region where intra-site 
interaction energies are very large and inter-site hopping 
energies (and thus also exchange energies) very small. The 
states K of the system are defined by a set {ni

K}of 
occupation numbers with i ranging from 1 to the total 
number of sites N. The energy of configuration K is 
 

EK = ∑iεini
K +∑j,i≠jni

Knj
K/2rij                         (3a) 

 
Site energies are defined to include the random 

energies as well as the interaction energies with all other 
sites, 
 

Ei
K = εi ni

K + ∑,j≠ini
K nj

K /2rij                   (4) 
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An important effect of the interaction term is to 
modify the one-particle density of states from n(εi) to n(Ei) 
by depleting states near the Fermi level. The physical 
reason for the depletion is that an invasion of an electron 
into a region of space already occupied by other electrons 
per force leads to a repulsion energy that distances the 
electron from the Fermi level. Since conduction occurs 
near the Fermi level interactions clearly reduce the 
conductivity. However, the reduction in conductivity can 
be alleviated in part by a collective motion of electrons 
(collective correlations) or by an electron waiting for a 
favorable fluctuation of other electrons to enter their space 
(sequential correlations). These many-body processes are 
not accountable for by a single particle density of states 
nor can they be incorporated in the percolation theory 
developed for the non-interacting systems. However, a 
percolation theory suitable for the interacting systems was 
developed [8]. Instead of generating bonds between sites 
in real space in accordance with (1) it generates bonds 
between configurations [8] in the configuration space in 
accordance with  
 

ρIJ ∝  γm-1exp(EIJ/kT) exp(2∑ rij/a)                  (5) 
 

 
Equation (5) is an expression [9] for (direct) transition 

times between configurations I and J. Here  
 

EIJ = max(EI,EJ),                         (5a)  
 

EK is the energy of configuration K as given by (4), 
and ∑ designates the minimal sum, with respect to 
exchange [9], of distances of the electrons transferred 
between I and J, m  is the number of electrons transferred 
between the two configurations, γ is a measure of the 
importance of interaction energy in the m electron 
transition: γ=0 when interactions vanish (i.e. when the 
electrons participating in the transition are distant from 
each other) and γ is of the order of 1 when interactions are 
important (when the electrons are nearby). Notice that 
when γ=0 only 1-electron transitions exist. Many-particle 
transitions can allow electrons to avoid each other and thus 
lower EIJ, making the transition easier [10], while 
increasing ∑rij makes the transition more difficult. 
Whether a collective transition is favored thus depends on 
whether the gain in lowering EIJ wins over the increase of 
∑rij.    

In the percolation procedure γ can always be taken to 
be 1 since for small  γ the drop in EIJ  is small but the 
increase in ∑ rij is substantial. Thus, even if γ for a 
transition is small but made to be 1, the percolation 
procedure will always pick the less resistive sequence of 
distant single-particle transitions over the more resistive 
many-particle transition (for a fuller explanation see [8]). 
Setting γ to 1 simplifies (5) to 
 

ρIJ ∝  exp(EIJ/kT) exp(2∑ rij/a) ≡ exp(EIJ/kT) exp(RIJ/a)    (6) 
 

Percolation in configuration space accounts for 
collective as well as sequential correlations: collective 
because a transition between two configuration generally 
involves a transition of more than one electron and 
sequential because different sequences of the same 
transitions take the path through a different intermediate 
state. This is illustrated in figure 1 by a very simple 
example of four sites and two electrons. 
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Two electrons 
on four sites =
= six configurations

( N!/n!(N-n)! )

Current path
In real space

Current path
In configuration space

Notice: differently correlated transitions correspond to different paths in configuration space
but they correspond to the same paths in real space.

 
Fig. 1. Transport in a tiny electron glass. Notice that the 
same current path (green) results from differently 
correlated transitions with different resistances. (top 
blue, collectively correlated, following blue, sequentially 
correlated). In configuration space (red) the paths are 
distinct. Insertion and extraction of an electron from the 
“electrodes” returns the configuration to status quo ante 
and allows for the current to keep flowing. In the 
configuration space this corresponds to E⇒A. The 
factorial   expression   in   the  upper  right  indicates  the  
     number of configurations for N sites and n electrons. 

 
 
 

Recent work on computer simulation of percolation in 
configuration space demonstrates that collective 
correlations are very important at low temperatures [8]. 

Turning now to the scaling theory we first briefly 
outline the method of [4], developed for non-interacting 
systems.  One scales all the distances between sites by a 
factor c. When the original distribution is a random 
distribution then the scaled version will also represent a 
random distribution. Since large random systems are 
expected to exhibit properties independent of a specific 
realization, it is immaterial that scaling is done on a 
particular realization. The scaling of distances corresponds 
to a change of concentration. There is clearly a one-to-one 
correspondence between a path in the scaled and in the 
unscaled system.  Since the resistance of a path depends 
primarily on its largest resistance it is easy to identify the 
critical resistance in the scaled system when the critical 
resistance is known in the unscaled system. One can 
similarly scale the random energies. Again there will be a 
one-to one correspondence between paths in the scaled and 
in the unscaled systems. Now clearly changing the 
temperature changes the energy range in which transport 
occurs and this in turn changes the effective concentration 
of the active sites in transport. To obtain a realistic 
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dependence on temperature one needs of course to scale 
the energy range and the concentration together, in 
accordance with the existing density of states. This still 
leaves one degree of freedom in the scaling. The scaled 
critical paths are possible paths at the desired temperature 
but the desired critical path will be the one where the 
critical resistance is the smallest. It turns out [9] that the 
procedure to obtain the minimal critical resistance 
corresponds exactly to Mott’s optimization method and 
also gives results identical to those obtained by percolation 
theory. 

Let us now apply the scaling method to the 
configuration space in an interacting system. The bonds to 
be scaled are given by (6) where we need to scale the 
energies and the distances. Some complication arises with 
the scaling of the energies EIJ = max (EI, EJ) which now 
according to (4) depends both on the random energies and 
on distances via the Coulomb interactions. However, this 
problem can be simplified by focusing on the low 
temperature regime where only sites in the vicinity of the 
Fermi level can participate in transport of carriers. Further 
from the Fermi level electrons and holes are frozen on 
their sites and cannot participate in conduction. 
Occupation on sites close to the Fermi level is determined 
predominantly by interaction [6,11]. Thus the term ∑iεini, 
important only on frozen sites, is constant at low 
temperatures for all configurations and can be taken out of 
the problem. Then from (3a) EIJ acquires the following 
form 
 

    EIJ
K ≈ ∑i,j≠i ni

K nj
K /2rij                      (3b) 

 
Where K=I or K=J in accordance with (5a). Notice 

that at low temperature both the energy terms E and the 
tunneling terms R of the resistances ρIJ in (6) are 
determined by the random variables rij. The energy term 
involves distances to sites that change occupation in the 
transition and the tunneling term, 2∑ rij/a ≡ RIJ/a, involves 
the minimized sum of hopping distances of electrons that 
change position between I and J.  

Using the scaling method, the rij in the bonds in the 
configuration space at T’ (say), ξ (T’) = EIJ/kT’+2RIJ/a are 
to be scaled by c, so the scaled bonds in the configuration 
space become 

 
ξ(T’) =  (EIJ)T’/kT’+(RIJ)T’/a ⇒ (1/c)(EIJ)T’/kT+c(RIJ)T’/a   (7) 

 
The subscripts T’ indicate values appropriate for ξ at 

the temperature T’. We are interested primarily in the 
bonds ξm corresponding to the maximal resistances. To 
avoid unnecessarily cumbersome notation (7) will be taken 
below to represent these bonds: the left hand side is then 
ξm(T’) while the right hand side with the appropriate c 
becomes ξm(T). The scaling parameter c is to be adjusted 
such that the scaled maximal resistances are as small as 
possible, i.e.  
 

d/dc[(1/c)(EIJ)T’/kT+c(RIJ)T’/a] = 0 = 
 -(1/c2)(EIJ)T’/kT+(RIJ)T’/a, 

 

c = [(EIJ)T’/(RIJ)T’]1/2/(a/kT)1/2                                     (8) 
 

Substituting c into the right hand side of (7) yields for 
each of the two terms [(EIJ)T’(RIJ)T’]1/2/(akT)1/2. Thus the 
scaled maximal bonds become 
 
ξm(T)  = 2 [(EIJ)T’(RIJ)T’]1/2/(akT)1/2

 = (EIJ)T/kT+(RIJ)T/a   (9) 
 

It is interesting to examine the maximal energy EIJ 
and the maximal total hopping distance RIJ. In a slightly 
rewritten form, 
  

[(EIJ)T’ (RIJ)T’/a]1/2 (kT)1/2
 = (EIJ)T

 
[(EIJ)T’ (RIJ)T’a]1/2(kT)-1/2

 =  (RIJ)T
 

Thus, as in variable range hopping, the hopping 
energy decreases with decreasing T while the (total) 
hopping distance increases with decreasing T. Here, in 
configuration space, the increase of the total hopping 
distance with decreasing T incorporates both variable 
range and variable number hopping. As a corollary of the 
above two equations we can conclude that the product 
EIJRIJ is temperature independent. Since T’ is just another 
temperature, we can drop the subscripts T’ from (9) and 
observe that ξm(T) depends only on the temperature T and 
not on T’. It must be pointed out that there exists a 
spectrum of combinations {(EIJ), (RIJ) } that produce the 
same ξm in accordance with (7). One should average EIJ RIJ 
over all such values, i.e. integrate over the surface 
ξm=const. To execute such an integration one must have 
better knowledge of the geometry of the configuration 
space so here we merely write <EIJ RIJ> for the appropriate 
average without evaluating it. We can then rewrite (9) to 
finally obtain 
 

ξm(T)  = 2<EIJRIJ>1/2/(akT)1/2  ≡  (T0/T)1/2, 
or 
 

σ = σo exp[-(To/T)1/2].                               (10)   
 
which corresponds exactly to (2). For the reason stated 
above, it is impossible at present to calculate  analytically 
T0 =  2(<EIJRIJ>/ak)1/2

 
 

3. Summary and discussion 
 
With (10) we showed that the many-body calculation 

of the conductance of an electron glass results, at low 
temperatures, in the same functional dependence derived 
by ES with neglect of the many-body effects. While ES 
calculate T0 from the one-particle density of states, a many 
body theory does not connect the one-particle density of 
states to conductance. Thus, for reasons stated above, it is 
impossible at present to calculate T0 here. Computer 
simulation is at present the only way to do so. To my 
knowledge, the most thorough many-body computer 
simulation of conductance in the electron glass is done in 
[8] for a two dimensional system. There it was found that 
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the conductance does follow (10). While collective 
correlations are found in [8] to be very important at low 
temperatures, the value of T0 is found to have a mildly 
smaller value than the ES value.  

It should be stressed that like most hopping transport 
theories the theory presented here is restricted to the 
strongly localized regime, i.e. deep in the insulator side of 
the Anderson-Mott metal-insulator transition (MIT). On 
the other hand, most of the experimental works showing 
the T-1/2

 conductance are performed not very far from the 
MIT. The practical reason probably is that deep in the 
insulator regime the resistance is too high to measure at 
the temperatures of interest. Several important aspects (not 
all independent of each other) of the conduction close to 
MIT were neglected here – the intra-site repulsion is not 
very large, the localized states are not confined to single 
sites and the localization lengths are not uniform, and the 
inter-site tunneling energy is not negligible. Further work 
to ascertain whether (2) and (10) can be justified closer to 
the MIT transition will thus be required. 
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