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The Planck radiation spectrum of ideal cubic and spherical cavities with low adiabatic invariants, γ = TV1/3, is discrete and 
strongly dependent on the cavity geometry and temperature. This behavior is the consequence of the random distribution of 
the state weights in the cubic cavity and of the random overlapping of the successive multiplet components, in the case of 
spherical cavity. The total energy density of cavities with low adiabatic invariant, γ (obtained by summing up the exact 
contributions of the eigenvalues and their weights) does not obey any longer Stefan-Boltzmann law. The new law includes a 
corrective factor depending on γ and imposes an exponential-type decrease of the total energy density to zero, when γ → 0. 
This special quantum regime, defined by limits of principal quantum number or of adiabatic invariant, appears to be similar 
for cubic and spherical cavities. The total energy density of cavities with low γ shows important macroscopic quantum 
effects over quite large domains of volumes and temperatures. 
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1. Introduction 
 
The ideal classical cavity may be defined as a closed 

surface with a perfectly smooth and unitary reflection 
interior wall, where the discrete absorption and emission 
of quanta by the atoms are leading to the thermal 
equilibrium [1-3]. The quantum counterpart of this 
classical definition is the concept of an infinite potential 
well, ensuring a vanishing probability for the photon 
presence outside its surface. The cavity may be described 
by a Dirichlet boundary condition [4-6].  

If we refer definitely to the black-body radiation, the 
effect of the geometrical confinement upon the frequency 
spectrum of the radiation stored inside the cavity may be 
assigned to an additional, kinetic quantizing, beyond that 
considered by Planck (referred to the discrete absorption 
and emission of quanta by the atoms of the cavity in view 
of reaching the thermal equilibrium). In this case, not only 
the energy exchanged between atoms and radiation is 
quantized (Planck’s quanta), but also the radiation energy, 
through the agency of the discrete spatial directions of the 
allowed wave-vectors (as a result of the radiation 
confinement). This quantum device was named double 
quantized cavity (DQC)[7-11]. The effect of the additional 
energy quantizing is controlled by the adiabatic invariant  
γ = TV1/3. DQC can be defined by a low adiabatic 
invariant, γ ≤ 1 (this implying for instance small 
temperatures, in the proximity of about 1° K, and small 
volumes, in the proximity of about 1 cm3), when the 
Planck spectrum of the black-body radiation presents a 
discrete pattern (of lines with irregular intensities), 
strongly depending on the cavity geometry [7-11].  

The total energy density of cavities with low γ does 
not obey any longer the Stefan-Boltzmann law, but a new 
law, which includes a corrective factor depending on γ and 
imposes an exponential-type decrease to zero, for γ → 0. 
The study of the geometrical confinement effect for cubic 
and spherical DQCs shows that, in spite of some additional 
complexity in the state identification, the total energy of 
the double quantized spherical cavity (DQSC) dependence 
[9-11] on the adiabatic invariant is almost identical to that 
of the double-quantized cubic cavity (DQCC).  

 
 
2. Energy density of cubic cavity with low 
    adiabatic invariant 
 
The total energy density is written in classical (large 

adiabatic invariant) case as: 
 

4VTE σ=  ,    (1’) 

 
where 

[ ]43153345 /1056477.715/8 Kcmergchk −⋅== πσ  is 
Planck’s constant of blackbody radiation energy (known 
by experimentalists as Stefan-Boltzmannn (S-B) constant). 
A possible universal form of this law, expressed in 
function of the normalized adiabatic invariant, is: 
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where  γ = TV1/3 is the adiabatic invariant and                   
α = hc/k =1.4388 cm.K. 

In DQCC, the total energy should be written by 
summing up the state energies up to the highest significant 
one, indexed by q =  qT  [10]: 
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or, in the universal form: 
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We can write the total energy in DQCC as in S-B law, up 
to the corrective factor: 
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In the asymptotic limit, g(q) tends to qqgasy π2)( =  

(by averaging over many and very close modes),  )/( γαF  
tends to 1, and one arrives to the classical S-B law. The 
corrective factor is represented in Fig.1, in function of the 
adiabatic invariant.   

The corrected S-B “constant” is down limited by the 
lowest cavity mode to the value:  

[ ]4317
1 10346.100178.0 −−− ⋅⋅⋅== Kcmergσσ    

and arrives to the asymptotic (upper limit) at the 
conventionally selected value LT ≈ 1, for which: 

[ ]4315
1 10340.79703.0 −−− ⋅⋅⋅== Kcmergσσ .   

Thus, the total energy in DQCC has a stronger 
dependence on temperature than was predicted by Stefan-
Boltzmann law and more correctly, is dependent on the 
adiabatic invariant. As the cavity is emptied of states, its 
total energy is strongly decreasing according a new law 
derived in Eq.(2’).  

Calculating the ratio (σ1 / σ )  from Eq. (3) with the 
exact degeneracy [10] and with the asymptotic relation 

qqg π2)( ≈ , we found out differences in the order of 
approximately 5⋅10-3, which are negligible in these 
calculations. Thus, we can assert that the small number of 
states in cavity (up to qT), at low γ = LT, plays the key role 
in calculating E and not the exact degeneracy.  

Therefore, the total energy density law of DQCC can 
be written in the form: 
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 In universal form, Eq. (4’) is: 
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We have shown that the positions of the energy 

density peak and of HSL depend on the adiabatic 
invariant.  Eq. (2’) and the figure 1 show that the 
asymptotic limit can be set for 

[ ] 10011)/( maxmax ≈→⋅≈→≈ qKcmF qγγα .  On the 
other hand, the lowest cavity mode (1,0,0) imposes an 
inferior limit to the level number at  (the 

smallest frequency in the cavity) leading to  γqmin ≈  0.1 
[cm.K].  

21091 γ≈=Tq
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Fig. 1. The corrective factor of the total energy in DQCC 
in function of the adiabatic constant γ = LT, calculated 
with:  (a) exact weights (with dots) and fitted with the 
exponential from Eq. (6) (red curve); (b) analytical 
approximation  of  weights  (with red dots) and fitted with  
              the exponential from Eq. (6) (blue curve). 
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Thus, we can define the double quantization regime of 
the cubic cavity in the range: 
 
                1 ≤  q ≤ 100  or    0.1 ≤ γ ≤ 1[cm.K]               (5) 

 
We found out an exponential approximation for 
σσ /1  as:   

 

]/082.0/06.0exp[/)( 2
1 γγσσγ −≈=F   (6) 

 
A reciprocity rule holds in DQCC: the cavity size and 

the temperature are reciprocal parameters, in the sense that 
the same effects (in the thermodynamics of the photon 
gas) can be obtained either by varying V or by varying T, 
if their product remains constant. 

 
 
3. Energy density of spherical cavity with  
low adiabatic invariant 
 
Using the kinetic energy states in a sphere with small 

radius R [9,11], we may derive the total energy of the 
black-body radiation inside the spherical cavity [10] as: 
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with γ1 = RT = 0.6203505 γ,          

=== παπα 2/2/1 khc  [ ],22899.0 Kcm ⋅=  
)/(256556.0/ 11 γαγα =  and cRz nlq /2πν=  ( nlν  are 

the zeros of the half-integer Bessel functions, 
characterizing the states of the spherical cavity) and gq – 
the corresponding weights. 

Similarly to DQCC, we can calculate the total 
energy in DQSC as in the classical law, up to a corrective 
factor, which takes in this case the form:  
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It may be proved that:  

 
                                  1)(lim =

∞→
γ

γ
F .                    (9) 

 
The demonstration [9,11] is based on the asymptotic 

degeneracy of the N – multiplets. The convergence of the 
function F toward 1 also resorts to the fact that the ratio of 
the dark state number to the allowed state number 
approaches zero for N→ ∞.  The existence of allowed 
states beyond the (parabolic) barrier of the highest poles 
and the zigzag diagonal line is essential in reaching the 
aforementioned convergence. 

The summation in Eq.(8) can be taken up to the index, 
qT, corresponding to the maximum significant state 
(frequency) found in [9], . Thus, for example, 
in the correction calculation at RT = 0.5, the upper limit in 
the sum can be taken q

RTzM 48=

T = 70.  
In Fig. 2, we have plotted the corrective function F(γ) 

(with solid line) in the interval 0 ≤ γ ≤ 2, in which the 
truncation errors remain acceptable, for the limited number 
of calculated and ordered states (300). One can remark that 
this “exact” corrective factor imposes a faster decrease of 
the cavity energy than that predicted by the Stefan-
Boltzmann law, as γ → 0. 
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    b 

 
Fig. 2. (a) The corrective factor of the total energy 
density in DQSC in function of the adiabatic constant           
γ = LT: the exact calculation with dashes; the calculation 
with Eq.(11) with red dots joined by lines; the calculation 
with approximation from Eq.(12). (b) Comparison of the  
    corrective factors for DQCC (blue) and DQSC (red). 

 
We can write the total energy density law of DQSC in 

the form: 
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Calculating the ratio (σ1 /σ ) from Eq. (8) with the 
exact degeneracy [9,11] and with the analytic relation g(q) 
≈ q2-1, we found out negligible differences in these 
calculations. Therefore, we can write the total energy 
density law of DQSC in the final form: 
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The universal form of this law is:  
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In the case of DQSC, we found out also a convenient 

approximation for )(γF  as:   
 

]/06.0/001.0exp[/)/( 2
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The convergence in summing up in Eq.(8) can be 

increased by iterative subtractions of the dominant 
asymptotic terms, which leads us to a precise formula over 
a very broad domain of adiabatic constant:  
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We can define the double quantization regime of the 
spherical cavity approximately in the same range of the 
adiabatic invariant as in the case of cubic cavity. The same 
reciprocity rule (as for DQCC) holds: the cavity size and 
the temperature are reciprocal parameters in the DQSC, 
i.e. the same effects (in the thermodynamics of the photon 
gas) can be obtained either by varying R or by varying T, 
if their product remains constant. 

The dependence of the total energy density in DQCs, 
cubic and spherical, on the adiabatic invariant, is quite 
similar. Following some preliminary calculations, we can 
infer that, for cavities with almost equal dimensions in all 
directions, this law holds irrespective of their shape. 
 
 

4. Measurement of total energy density of  
    cavities with low adiabatic invariant 

 
Designing good cavities with quantum features shows 

that spherical cavities could be achieved practically with 
optimum shape and parameters. Measuring the total 
energy of cavities with small adiabatic invariant,  one have 
to calculate the maximum of Planck distribution, which 
was found in [9-11] to be approximately at the same 
frequency as for the classical ones and given by Wien 
displacement law:  
 

T 105.87896  (k/h)T 2.8214394 10⋅==Mf  (14) 
 

Using again the highest significant level (HSL) in the 
cavity, { } 2 [cm.K]109 γ≈Tq  [10], we can write the 
maximum of Planck distribution in terms of cavity state 
numbers, as: 
 

{ 2 [cm.K]3.8454 γ⋅≈Mq } , (15) 
 
and the the ratio between the HSL and the maximum level 
numbers, frequencies respectively: 
 

28/ ≈MT qq  and  3.5// ≈= MTMT qqff .  (16) 
  

Thus, one can assert that the significant bandwidth of 
the black body radiation is: . MfB 3.5≈

It is interesting to find the condition for the 
localization of an antiresonance (dark state) in the 
maximum of the Planck distribution of DQCC.  Assuming 
that q

M
 = 7, one can derive q

T
 ≈ 200 (at the limit of the 

quantum regime); thus, the first antiresonant singlet will 
produce a “hole” in maximum of the energy density of 
DQCC radiation at: 
 

                                  [ KcmLT ⋅ ]≈ 35.1 .           (17) 
 
For L =1cm, one obtains: T ≈ 1.35K  and  f

M
 ≈ 79.3 GHz   

(corresponding to λ = 3.78 mm, which is not in the 
maximum of the energy density distribution, when 
represented in λ scale). The quality factor of the cavity at 
this frequency, ,   leads to a 
good discrimination of the first antiresonant mode.     

465/8/ 33 ≈≈∆= λπLffQ

 We have defined the quantum regime of the 
studied cavities in (5) as: 
 

 1 < q < 109   (18) 
 

or 0.1 < γ < 1 [cm.K]  (19) 
 

or c2/L2 ≤ f2 ≤ 109c2/L2  (20) 
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Examples. One can see that DQCC with L = 1cm 
emits radiation in the frequency band    f ∈[30, 300] GHz  
(at T∈[0.1, 1]K ). 

For L = 1mm, the quantum regime of the cavity asks 
for temperatures around that of the liquid He, 1 < T <10 
and for  L = 20 µm, the quantum regime of QCC occurs at 
temperatures around the room temperature:  50 < T < 500 
(fM ≈ 17.7 THz;   λM ≈ 0.6c/ fM ≈ 10µm ).  

If we take 5.0=γ , the graphs from Fig. 2b show that 
8.0/1 ≈σσ  and the total energy density of the cavity is 

. Thus, for a 

cavity with V = 1cm
[ergVTVTVTE 41544

1 1068.0 −⋅≈≈= σσ ]
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3, the chosen adiabatic invariant 
imposes T = 0.5 K and one can derive 

 
This energy level is measurable with present 
instrumentation as in atomic spectroscopy (it is about 
hundred times smaller than Rydberg transition energies) 
and with cooled bolometers as the cosmic microwave 
background radiation (at the temperature of 2.7 K, with the 
peak at f

[ ] [ ] .1034.210375.0106 415415 eVergergVTE −−− ⋅=⋅=⋅≈

M ~ 160.4 GHz), where sensitivities of 
 are accessible [12]. 6102/ −⋅≤∆ TT

One can imagine two procedures for the measurement 
of the total energy density of spherical cavities with small 
adiabatic invariant based on energy ratios (in order to 
eliminate the systematic errors), as in Fig. 3. 

 

a 

 

b 
Fig. 3. (a) The total energy ratio of two spherical cavities 
with equal radii, R, held at different temperatures 
(ratios), T2 / T1.   (b) The ratio of the total energies of two 
spheres with two ratios of the chosen radii,  held  at  the  
                              same temperature, T.  

 

rical cavity, with a diameter of 1cm, held at two 
temperatures, T2 = 4K and T1 = 1K, the ratio of its 
respective total energies (measured with highly sensitive 
bolometers) is 151.046. The graphs of the total energy 
ratio are plotted in Fig. 3a, for two different ratios T2 / T1 
and for different values of the sphere radius, R; one can 
observe that the total energy ratio saturates in both cases, 
at very macroscopic radii.  

Alternatively, one can 
o spheres with different radii, for example, R2 = 1cm 

and R1 = 0.5cm, held at the liquid He temperature, T = 4 
K. The ratio of the corresponding total energies is 7.26217. 
In Fig. 3b, it is shown the dependence of this ratio on the 
temperature, for two ratios of the chosen radii; one can 
observe that the total energy ratio saturates in both cases, 
at low temperatures. These measurements can show 
important quantum effects at macroscopic scale. 

 
 
5
  
The total
batic invariants (obtained by summing up the exact 

contributions of the eigenvalues and their weights) does 
not obey any longer the Stefan-Boltzmann law. The new 
law, which is similar for cubic and spherical cavities, 
includes an exponential corrective factor depending on γ 
and imposes a faster decrease of the total energy to zero, 
for γ → 0.  

We hav
ic and spherical cavities by the conditions on the 

adiabatic invariants (or on principal quantum numbers): 
0.1 ≤ γ ≤ 1[cm.K]. The cavity volume and the temperature 
are reciprocal parameters in the sense that the same effects 
(in the photon gas) can be obtained either by varying V or 
by varying T, if their product remains constant. The limits 
of the double quantized regime are quite similar for cube 
and sphere, in terms of adiabatic invariant. 

The total energy of the double qua
s large differences from the classical calculations 

over unexpected large intervals, which can be measured 
and show important macroscopic quantum effects.  
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